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Overview
The PhenoGen Informatics website (http://phenogen.ucdenver.edu) is a comprehensive toolbox for storing,
analyzing, and integratingmicroarray data and related genotype and phenotype data. The site is particularly
suited for combining QTL andmicroarray data to search for "candidate" genes contributing to complex traits.
In addition, the site allows, if desired by the investigators, storage and sharing of data. Investigators can con-
duct "in-silico" microarray experiments using their own and/or "shared" data.

The PhenoGen toolbox was originally created to facilitate interactions within the INIA consortium of inves-
tigators. In brief, the goals and purpose of the INIA (IntegrativeNeuroscience Initiative onAlcoholism,
http://www.scripps.edu/cnad/inia/index.html) consortium is to identify themolecular, cellular, and behavioral
neuroadaptions that occur in the brain reward circuits associated with the extended amygdala and its con-
nections as a result of exposure to ethanol. Although PhenoGenweb tools were initially created for the con-
sortiummembers, the integrated tools described here can be used by the global scientific community.

Disclaimer
PhenoGen Informatics hopes that the tools made available will be useful to investigators in advancing the
knowledge about genes throughmicroarray research. However, since all of these tools rely on the information
uploaded by various investigators and from various public databases (such as MGI, Ensembl, and NCBI),
PhenoGen cannot guarantee the reliability of the data. Similarly, if any of these databases are not functioning
properly, suchmalfunction is expected to affect the results of queries carried out on the PhenoGenwebsite. In
the past few years, availability of computational tools based on “Natural Language Processing” has con-
siderably decreased the time needed for high-throughput literature searches. However, users should check
the results of the "Literature Search” due to various caveats associated with extracting information out of bio-
medical literature using such computational tools (Hunter and Cohen, 2006, Molecular Cell, 21:589). The Phe-
noGenwebsite tools use gene symbols and synonyms along with the user-defined keywords to search the
PubMed database. For example, gene symbol “Cap1” (which could be either an official gene symbol for “ade-
nylyl cyclase-associated protein 1” –MGI ID: 88262, or a synonym for “protease, serine, 8” –MGI ID:
1923810, or a short-form for “contraception-associated protein 1” – PubMed ID: 11105923) may pull abstracts
related to any of these proteins and a gene symbol “Wars” (for tryptophanyl-tRNA synthetase) may get
abstracts related to wars (fighting) rather than the actual gene. Please use the tools provided on the Phe-
noGenwebsite with care and proper reflection and review of the output.

Citation for the PhenoGen Website
PhenoGenWebsite [Internet]. Aurora (CO): University of Colorado Denver, School of Medicine. PhenoGen
Informatics, 2007 - [cited (insert date of access)]. Available from: http://phenogen.ucdenver.edu. Primary pub-
lication describing PhenoGen and use of tools available to investigate "candidate genes" for a complex trait:
Bhave et al., 2007, BMC Genetics, 8:59.
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Getting Started
Before you can use the PhenoGenwebsite, youmust register and set up a user profile. Your user profile pro-
vides details such as your name, email address, and the Principal Investigator you are working with. Your
user profile can bemodified at any time when you are logged into the website. After your registration is com-
plete, you can use the website to create and analyze datasets and research gene lists. The website is avail-
able at http://phenogen.ucdenver.edu/

See "Registering an Account" and "Logging In andOut" on page 7 for details.

Minimum System Requirements
To successfully run the PhenoGenwebsite on your browser, your computer must have:

l 1GB RAM
l 3.0 GHz CPU
l One of:

o Firefox 2.0 or later
o Internet Explorer 7.0 or later.
o Safari 2.0 or later

Note: The features and functionality of the PhenoGenwebsite may work with other browsers, but com-
patibility is not guaranteed, and the support provided for those browsers may be limited.

User Types
There are two types of users in the PhenoGenwebsite:

l Basic User (default)
l Principal Investigator (PI)

See "Registering an Account" for details.

Basic User
Most users are basic users. These users can:

l Upload experiment arrays.
l View arrays and datasets.
l Create datasets.
l Download datasets.
l Access all of the available data analysis tools.
l Use all the tools available for researching genes.

Principal Investigator
The Principal Investigator (PI) is often the head of a lab and is responsible for granting permission to other
users to view the arrays uploaded by researchers in the PI's lab. A user who is a Principal Investigator sees a
Principal Investigator box on the Home page after logging in. This box provides administrative functions for
the PI. In addition to all of the functions available to basic users, the PI can:

l Approve array requests.
l Grant array access to an individual.
l Grant open access to array data.
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PhenoGen Website Overview
The PhenoGenwebsite shares experimental data with a worldwide community of investigators and provides a
flexible, integrated, multi-resolution repository of neuroscience transcriptomic genetic data for collaborative
research on genomic disorders.

The website provides a comprehensive system to organize, query, analyze, and retrieve high-throughput gene
expression data, as well as providing users with computational tools for integrated analysis of neuroscience
data, biomedical literature, gene functional annotations, andQuantitative Trait Loci (QTLs).

The PhenoGenwebsite allows data to be classified as "Semi-public" or "Open Access". All of the information
about the data uploaded at the PhenoGenwebsite is visible to every registered user (see "Registering an
Account" on page 6 for details). Registered users have full access to data that is classified as "Open Access"
and do not need to obtain permission from the curator (Principal Investigator) of the data. "Semi-public" data
can only be accessed and downloaded after the curator of the data grants a user permission to do so. Reg-
istered users can use the data for "in-silico" analysis or can download the data for analysis with their own sta-
tistical software.

The website also has nine pre-compiled “Public” microarray datasets that can be used and downloaded by all
registered users for gene expression analysis, including correlating with user-provided phenotype data. These
datasets include inbred and recombinant inbredmice and rat strains.

The PhenoGenwebsite allows you to:

l Uploadmicroarray raw data into aMIAME-compliant database.
l Upload gene lists.
l Share data with other investigators around the world.
l Search literature and save results.
l Translate gene identifiers to and frommultiple databases.
l Determine phenotypic QTLs using BXD recombinant inbredmice, HXB/BXH recombinant inbred rats,

or LXS recombinant inbredmice.
l Match physical location of genes of interest and their eQTL to phenotypic QTLs.
l Correlate gene expression with a phenotype.

You can also perform:

l Microarray data quality control analysis and normalization.
l Data filtering (noise filtering).
l Statistical analyses, including themost common statistical tests and permutations.
l Promoter analysis (transcription factors).
l Queries about genetic variations (e.g. SNPs or polymorphisms) in the transcripts of interest.

3



Website Process Flow for Microarray Analyses

Analyze Microarray Data

The process flow for amicroarray analysis is:

Dataset Creation

Uploadmicroarray data. If you havemicroarray
data from a lab experiment, you can upload it
into aMIAME-compliant database that is part
of the PhenoGenwebsite.

1. Retrieve arrays.
2. Select andmerge arrays from the data

repository.
3. Finalize dataset.
4. Run quality control measures on the

merged arrays.
5. Review quality control results.

Dataset Preparation

6. Group the arrays based on your hypoth-
esis (e.g., disease vs. control).

7. Normalize the dataset.

Dataset Analysis

8. Select a single normalized version.
9. Select analysis type.
10. Filter genes.
11. Perform statistical analysis.
12. Perform amultiple testing adjustment
13. Save gene lists.

Research Gene Lists

Do one of the following to enter a gene list in Phe-
noGen:

l Generate a gene list frommicroarray analysis
(see the preceding AnalyzeMicroarray Data
section.)

OR

l Upload a gene list if you have an existing gene
list to interpret.

When your gene list is on the website, use the anno-
tation, QTL, literature search, and promoter analysis
tools to help interpret your list of candidate genes.
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Website Home Page
The PhenoGen Informatics web site is not only amicroarray repository, but also a comprehensive toolbox for
analyzingmicroarray data and researching candidate genes. On the landing page, green options are available
to view at any time. Blue options require that you register and log into the website.

TheOverview option provides descriptions and examples for each of the fivemajor sections:

l Detailed Transcription Information
l Downloads
l Microarray Analysis Tools (login required)
l Gene Analysis Tools (login required)
l QTL Tools (login required)

TheAbout option provided links to current datasets, recent publications (documents that relate to the Phe-
noGen database, gene analysis, and other topics of interest), version information, citations, and links that you
may find useful.

The Login/Register option allows you to:

l Register to use the website.
l Log in to the website.
l Retrieve a forgotten password.
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Registering an Account
The Registration pagemust be completed before you can log into the PhenoGenwebsite.

1. Click Login on theHome page, then click theRegistration button. TheRegistration page displays.

Note:Required fields have an asterisk *.

2. Select your Title and enter your First Name,Middle Initial, and Last Name.
3. Enter aUsername. If the username you enter is the same as an existing name, an error message dis-

plays when you try to register.
4. Enter aPassword, then re-enter the password. Your passwordmust be 6 to 16 characters andmust

contain numbers, letters, and special characters (~!@#$%^&*()+).

Note:Your Username and Password allow you to log into the website.

5. Enter your contact Email, Phone, and Fax.
6. Enter theName of your institution, yourDepartment, and yourBox number.
7. Select Self if you are the principal investigator, or select theChoose a Principal Investigator option.

Choose a PI

1. Enter the First and Last Name of the PI, and click Find PI.
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2. Click Choose this PI if the system finds the Principal Investigator you want.
3. Click Choose Myself as Principal Investigator if the Principal Investigator you

searched for is not there.

8. Enter yourAddress.
9. Select I agree to the Legal Notices and Privacy Policy terms of use.
10. Click Register. A pop-up displays with the terms of the PhenoGenwebsite. If you agree to the terms,

click OK to send your request for registration. Click Cancel if you do not agree to the terms.

If your registration request is successful, a page displays that informs you that your submission was suc-
cessful and the submission will be reviewed within 24 hours.

See "Updating Your Profile" for instructions on changing your registration information. The only detail you can-
not change is your username.

Logging In and Out

Logging Into the Website
Before you can log into the PhenoGenwebsite, youmust register and receive approval for your registration.
After your registration is approved:

1. Open your Internet browser.
2. Type http://phenogen.ucdenver.edu in the location bar, and press Enter on your keyboard. The Phe-

noGenwebsite displays.
3. Choose Login/Register.
4. Enter yourUsername.
5. Enter yourPassword.
6. Click the Login button below the Password field to log in. TheHome page displays.
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Your Home Page

After you log in, theHome page is personalized. AWhat would you like to do? box displays actions youmay
want to perform.

Logging Out of the Website
Log out of the website when you are done entering data, creating datasets, and analyzing data. When you log
out, the website knows that you are finished and closes your connection to the website. You can log in again
at any time.

1. Click Account.
2. Click Logout.
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Updating Your Profile
You can update the information you provided in the Registration page.

1. Log into the website.
2. Click My Profile at the top right. TheRegistration page displays.

Note:Required fields have an asterisk *.
3. Update your information as required. You cannot change your username.
4. Click Update to update your information, orReset to return all the fields to their original values.

Using the PhenoGen Website
The PhenoGenwebsite has a number of conventions that are common throughout all the pages and tabs.

Icons

Icons in the tables on some pages show the actions that you can take for specific data:

Icon Action

Delete
Click the Delete icon to delete the row in which the icon displays. The
Delete icon allows you to delete datasets, gene lists, and QTL Regions. It
also displays on many detail pages, such as the Grouped and Normalized
page or the tabs for a specific gene list, to allow you to delete specific items
within a dataset or gene list.

Download
Click the Download icon to download the data for the row in which the icon
displays. The Download icon allows you to download datasets, gene lists,
and QTL Regions.

View Details
Click the Magnify icon to display details for the item on the current page,
such as a specific dataset or gene list.

Help
Click the Help icon to get help that pertains to a specific section of a spe-
cific page. Choose Help in the main menu then click Help Overview to dis-
play the full version of the help. Or, click Help in the main menu to display
help for the specific page or tab displays.

Information Hover over the Information icon for an explanation of the item the icon is
beside.

plus

minus

Click the plus orminus icons to show and hide more information.

sort A-Z

sort Z-A

Click the arrows to change the sort order in a column.

Rows

Rows in tables change to purple when youmouse over them. Click on a row to select it. Click theView link to
display row details.
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Depending on your browser settings, items you click may display in the current browser window, a new
browser window, or a new tab.

Links

Many pages have links below the "Steps..." and at the top right (Note theDataset Details link at the top right
in the following screen shot). The links may allow you to:

l Quickly select new data without clicking a tab and starting again at the beginning of the selection proc-
ess.

l View details of your current data.
l Download the current data.
l Perform other actions, like creating a new normalized version or creating a new dataset.

Link options are customized for each page. For example, in the analyzing datasets process, aChoose Data-
set link displays below theSteps to run an analysis and allows you to change datasets.

Using the Online Help
The PhenoGenwebsite has online help to assist you. You can open the full online help or task-based help for
each page in the PhenoGenwebsite. Most instructional pages in the help contain links to related topics in a
See Also section. You can also download the latest PDF version of the PhenoGenUser Guide.
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Full Version of Online Help

l Choose Help in themainmenu, then click Help Overview.

Use the table of contents, the index, or the search to find the topics that you want.

Task-based Version of Online Help

Task-based help is pertinent to a specific page in the PhenoGenwebsite.

l ChooseHelp in themainmenu.
l Click Page Specific Help to open the task-based topic related to the current page. The following

image is an example of a task-based topic.
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Detailed Transcription Information
Detailed Transcription Information is available regardless of whether you are logged in. A video provides a
demonstration of the functionality.

On the Detailed Transcription Information page:

1. Enter a gene identifier or region in the gene field. For example:

l Gene identifiers: gene symbol, probeset ID, ensembl ID, etc.
l Regions: chr1:1-50000 (Chromosome 1 bp 1-50,000), chr1:5000+-2000 (e.g., Chro-

mosome 1 bp 3,000-7,000), chr1:5000+2000 (e.g., Chromosome 1 bp 5,000-7,000), etc.

OR

2. Click Translate Region to Mouse/Rat to find regions on theMouse/Rat genome that correspond to a
region of interest in the Human/Mouse/Rat genome.

3. Choose a species.
4. Click Get Transcription Details. If they are available, transcription details for the gene or region you

entered display in a combination of interactive images and graphs.

Note: For rats only, whole brain RNA-Seq transcriptome reconstruction data also displays.

Transcriptome Reconstruction (Rat Only)
The rat brain transcriptomewas reconstructed using RNA-Seq data from the BN-Lx/CubPrin and SHR/OlaP-
rin strains. PolyA+ RNA was extracted from three rats per strain and sequenced by an Illumina HiSeq2000
using paired-end reads 100 base pairs long. Reads were aligned to the rat genome (rn4) using TopHat (Trap-
nell et al 2009) after trimming each read fragment to 70 base pairs. Almost 300million reads were sequenced
and successfully aligned to the genome. The transcriptome reconstruction was done in each strain separately
using the CuffLinks program (Trapnell et al 2010) and thenmerged. Transcripts are labeled CUFF.X.Y, where
X is a numeric identifier for the gene and Y is the numeric identifier for a specific isoform/transcript of that
gene. The aligned RNA-Seq data is available for download from PhenoGen as SAM files.

There currently is no data available from amouse brain transcriptome reconstruction, but the analyses are
underway.

References

1. Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-
Seq. Bioinformatics (Oxford, England), 25(9), 1105–1111. doi:10.1093/bioinformatics/btp120

2. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., et
al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and iso-
form switching during cell differentiation. Nature biotechnology, 28(5), 511–515. doi:10.1038/nbt.1621

Detailed Transcription Information for Gene Identifiers
After you get transcription details for a gene identifier, you can:

l View the resulting images with unfiltered probe sets or with probe sets filtered by detection above back-
ground when you choose an option button below the image.

l Filter the result set andmodify the display options.
l Click the image to view it in more detail in the UCSC Genome Browser.
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Parental Expression
Parental expression values from Affymetrix exon arrays are derived from normalized expression data from the
Affymetrix arrays using RMA and all probe sets available after masking, regardless of annotation level (see
Public Data Sets). For themouse data, the parental strains of the ILSXISS recombinant inbred panel that are
used for the remaining analyses are the ILS and ISS strains. For the rat data, the parental strains of the
HXB/BXH recombinant inbred panel are the BN-Lx/CubPrin and the SHR/OlaPrin. For the ILS and ISS
strains, six animals per strain are included and for the BN-Lx and SHR strains, three to four animals per strain
are included, depending on the tissue. The log base 2 difference inmeans is calculated so that a positive
value indicates higher expression in the ILS (or SHR for rat) strain.
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Panel Heritability
Heritability was calculated on the probe set level for all probe sets, regardless of annotation level. See "Her-
itability Filter" for Affymetrix for details on heritability calculations.

Panel Expression
All panel expression values are extracted from the public data set of the RI panel on the Affymetrix exon array
that is normalized using RMA and summarized into probe sets (full annotation). See Public Data Sets for more
detail.
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Panel Exon Correlation
The Panel Exon Correlation can also be viewed on the Exon Correlation tab for a gene list. See "Viewing
Exon-level Correlations" for details.
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eQTL
Expression quantitative trait loci (eQTL) were calculated for transcript clusters associated with Ensembl
genes for themouse RI panel and the rat RI panel and for each tissue separately.P-values were calculated for
each transcript cluster and SNP combination using strain means of the recombinant inbred panels and the
SNP data sets. Locus-specific p-values were calculated using permutation (10,000 permutations) and con-
verted into negative log base 10 values.
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Running the Circos Plot

1. Enter a threshold for the p-value and choose a Transcript Cluster ID.
2. Click Click to run Circos. A Circos Plot displays.

The Circos Plot highlights locations in the genomewith p-values below the selected threshold. These
locations are connected to the physical location of the selected transcript with a curved line, color-
coded to indicate the tissue type.

You can run the Circos Plot again at this time, with additional choices. A subset of chromosomes can
be selected to expand the plot in areas of interest. For rats, the tissues can be narrowed to include only
one, two, or three selected tissues.

3. Click to download the plot as a PDF.

Detailed Transcription Information for Regions
After you get transcription details for a region, you can:

l View the resulting images with Ensembl and RNA-Seq (Rat only) transcripts or alignment to Human
chromosomes when you choose an option above the image.

l Filter the result set andmodify the display options.
l Click the image to view it in more detail in the UCSC Genome Browser where you can further cus-

tomize your view of that region within their site..

The first image is generated through the UCSC Genome Browser. The requested region is shownwith behav-
ioral and physiological QTL from the Rat GenomeDatabase or theMouseGenomeDatabase, annotated Ref-
Seq genes/transcripts, and expression data on normal tissue from the UCSC Genome Browser database.
The image can be altered using the Image control options above the image to show or hide transcripts and to
change the track options.

Genes Physically Located in a Region
All Ensembl genes (including protein-coding and non-coding) are listed in the table. For regions in the rat
genome expressed in brain, derived from genome-guided transcriptome reconstruction using brain polyA+
selected RNA from the BN-Lx/CubPrin and SHR/OlaPrin, strains that do not overlap an Ensembl gene are
also listed. See "TranscriptomeReconstruction (Rat Only)".

The table has a row for each Ensembl gene, and each Ensembl genemay havemultiple transcript (i.e., splice
variants).
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# Ensembl Transcripts

The # Ensembl Transcripts column lists the number of transcripts annotated by Ensembl that are associated
with a particular gene.

Transcripts (RNA-Seq)

The Transcripts RNA-Seq column reports the number of transcripts from the transcriptome reconstruction in
rat brain (i.e., the transcript must be expressed in brain to be identified in the reconstruction) that overlap the
annotated gene. The RNA-Seq transcripts identified as being associated with a given gene are only required
to be on the same strand and have some overlap in either exonic or intronic regions. There is no requirement
that exonic regions of either overlap, so it is possible a transcript in this count might be located in an intronic
region of the Ensembl transcript.

Total Probesets

The Total Probesets column reports the number of probe sets from the Affymetrix Exon 1.0 ST array that over-
lap the gene. The count includes any probe sets that fall within the start base pair and stop base pair, such as
any associated RNA-Seq transcript start and stops that may extend past the start or stop of the annotated
gene, and are on the same strand as the annotated gene. This count includes probe sets that fall in an anno-
tated intron as long as the probe set is on the same strand as the gene. The count includes probe sets that
have not beenmasked due to unreliable data (i.e., SNPs or non-uniquely aligning probe sets).

Probesets > 0.33 Heritability

For each probe set on the Affymetrix Exon 1.0 ST Array (mouse or rat), we calculated a broad-sense her-
itability using an ANOVA model and expression data from the ILSXISS panel (mouse) or the HXB/BXH panel
(rat). See "Public Datasets" for details. The heritability threshold of 0.33 was chosen arbitrarily to represent an
expression estimate with at least modest heritability. In the rat, we include the number of probe sets at least
modestly heritable in the four available tissues: brain, heart, liver, and brown adipose.

Probesets > 1% DABG

For each probe set on the Affymetrix Exon 1.0 ST Array (mouse or rat) and each sample, we calculated a p-
value associated with the expression of the probe set above background (DABG – detection above
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background). Using a p-value threshold of 0.0001, we calculated the proportion of samples from the ILSXISS
panel (mouse) or HXB/BXH panel (rat) that had expression values significantly different from background for a
given probe set. In the table, we report the number of probe sets whose expression values were detected
above background inmore than 1% of samples.

eQTLs (Gene/Transcript Cluster ID)

eQTLwere calculated for each transcript cluster (approximately gene) on the Affymetrix Exon 1.0 ST Array
using the ILSXISS panel (mouse) and the HXB/BXH panel (rat). See "Public Datasets" for details. Locus-spe-
cific p-values were calculated using permutationmethods for each transcript cluster/SNP pair.

Transcript Cluster – The numeric ID that is used by Affymetrix to specify a group of probe sets that have
been combined to estimate expression at the gene level rather than at the individual exon level.

Annotation Level –Affymetrix indicates its confidence in annotation of a particular transcript cluster by clas-
sifying it as core (most confidence), extended, or full (least confidence). This designation is based on the
source of annotation for a gene. For more details, see the Affymetrix website at: http://www.affymetrix.com.

View Genome-Wide Associations –A Circos graphic displays for this particular gene/transcript cluster
when you click the link in this column. The graphic displays the locus-specific (location-specific), p-values
across the genome for the gene. When examining data from rat, the locus-specific eQTL displays for each of
the four tissues available.

Total # of Locations P-value < 0.001 – In this column, we calculated the number of locations (loci) within
the genome that the transcript cluster was significantly associated with (locus-specific p<0.001). For rat, this
is calculated for each of the four tissues separately.

Minimum P-Value Location – This column gives the location of the locus with the smallest p-value for this
transcript. This is the strongest eQTL for that gene. If no loci have a p-value less than 0.001, no results are dis-
played in this column. For rat, this is calculated for each of the four tissues separately. The p-value cutoff may
be adjusted in the filtering section.

bQTLs Overlapping Region
The bQTLOverlapping Region table lists all the behavioral and physiological QTL reported in the Rat Genome
Database (RGD) or theMouseGenomeDatabase (MGD) that overlap the genomic region selected. The col-
umn identified as References includes two links. The top link takes you to the related entry at the RGD or
MGD and the bottom link takes you to the related journal article through PubMed. The second-to-last column
is the whole region reported for the bQTL. When you click this link, a new window with the detailed tran-
scriptome information for the region of that particular bQTL.
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Transcripts Controlled From Region (eQTL)
The Transcripts Controlled from Region tab displays a Circos Plot that shows the physical location of genes
controlled from the selected region. P-values less than 0.001 are highlighted in yellow, and links are drawn to
connect the physical location of the transcript with the associated loci within the specified region. For rat, infor-
mation on the four tissues available displays in different colors.

1. Click Filter List and Circos Plot to select from a subset of chromosomes and tissues (for rat), and
generate the plot again.

2. Click to download the plot as a PDF.
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The table below the Circos Plot lists the genes whose expression is controlled from the chosen region. The
first several columns are identical to the table in the first tab. See "Genes Physically Located in a Region".

The columns that differ are:

P-Value from Region

Theminimum p-value in the chosen region is reported for each transcript cluster. For the rat, separate col-
umns are reported for each of the four tissues. If a gene has a significant eQTL in this region in any tissue,
minimum p-values are reported for all four tissues. eQTL that reach the p-value threshold are highlighted in
blue. You can filter on a number of parameters to obtain amore reasonably sized list. You can decreases the
minimum p-value to look for more significant eQTLs, or you can limit your search to particular chromosomes
to view only genes located on the selected chromosomes.

The exact regionmay be larger or smaller than the region you entered. A list of the exact eQTL regions dis-
plays above the Circos Plot.

# other locations p-value<0.001

This column counts the number of loci (locations) in the genome outside the chosen region that have a sig-
nificant association with expression of this gene.
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Analyzing Microarrays
Microarray Analysis Tools allow you to:

l Analyze precompiled datasets. See "Viewing Datasets"for details.
l Upload your own data (the raw data files: .CEL files for Affymetrix or .txt files for CodeLink). See

"Uploading Your Arrays" for details.
l Create a dataset from public and private arrays. See "Creating Datasets" for details.
l View expression values for a list of genes in a dataset. See "Viewing Gene Expression Data" for

details.

After themicroarray data you want is available, you can:

1. Designate which arrays you want to include in your analysis.
2. Run the quality control process to ensure the arrays meet basic quality standards.
3. Group the arrays based on your hypothesis, and normalize the data using one or moremethods. Each

normalized version can be saved and analyzed independently.
4. Analyze the normalized versions and save the resulting list of genes.
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Viewing Datasets
You can see the collection of all your datasets at any time. The page that displays your datasets shows you
the stage that each dataset is in (e.g., quality control completed, grouped and normalized, etc.)

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.

At the top of the page, you can click theCreate Dataset option if you want to retrieve and select arrays and
finalize them into a new dataset, or click theUpload Arrays option to upload your own arrays and create a
dataset. The page provides four grouped and normalized "Public" datasets for you to analyze and save new
gene lists. See "Public Datasets" for information about public datasets.

Another table displays after the Public Datasets table and shows your "Private" datasets. After you finalize a
dataset, it becomes part of theMy Private Datasets table, where your progress on that dataset is denoted in
the columns:

l QC Complete: The word "Run" displays in the QC Complete column until you perform quality control
checks. At that time, "Review Results" displays in the QC Complete column. Youmust review your
quality control results and approve them before a checkmark displays in this column.

l Arrays Grouped and Normalized: The word "Run" displays in the Arrays Grouped and Normalized
column until you create a group and normalize the data based on that grouping. You can createmultiple
array groupings and normalize each groupmany different ways. Each normalized grouping is saved as
a new dataset "version". After you create and normalize your grouped arrays, a checkmark displays in
this column.

l Phenotype Data: A magnifying glass displays in this column if there is phenotype data for the dataset.

Results section

l Quality Control Results: A magnifying glass displays in this column if there are quality control results
for the dataset.

l Cluster Results: A magnifying glass displays in this column if there are cluster results for the dataset.
l Gene Lists Saved: A checkmark displays in this column after you analyze the normalized dataset and

save the resultant gene list.

You can:

l Click a dataset to view that dataset in its current state of processing.
l Click theView link in theDetails column to view dataset details such as name, description, organism,

arrays in dataset, andmore. See "Viewing Dataset Details" for more information.

l Click theDelete icon to delete a dataset.

l Click theDownload icon to download a dataset.
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Public Datasets
The Public datasets available for analysis on the PhenoGenwebsite are pre-compiled groupings of gene
expression data for various strains of inbred and recombinant inbredmice and rats. These datasets are avail-
able for all types of analysis by any registered users but may bemost useful for performing correlation anal-
ysis with phenotype data. These datasets are normalized using themost common normalization techniques
and have already had quality control checks run. Additionally, datasets created using the Affymetrix Exon
arrays have been adjusted for batch effects using an empirical Bayes method (Johnson et al 2007). The nor-
malized data or raw data can be downloaded from the Download Resources page.

Inbred Mice

The whole brain gene expression dataset for the inbredmice includes 20 inbred strains. Each strain has four to
seven biological replicates for a total of 90 individual arrays. The whole brain mRNA for each naive 10-12
week oldmalemouse was hybridized to a separate array, i.e., no pooling of samples.

The inbredmouse data was normalized nine different ways. Five of the normalizationmethods are available
on the website. For the other four versions, a probemask was created to eliminate probes whose sequences
did not match to the NCBI m37 Build, matched the genome inmultiple places, or harbored a SNP between
any of the 19 strains where genotype data is available at the ImputedGenotype Resource from the Jackson
Laboratory; http://cgd.jax.org/datasets/popgen/imputed.shtml (129P3/J is not available). Entire probe sets
were eliminated if less than four associated probes remained. The version using the probemask and the RMA
normalizationmethod is the RECOMMENDED version.
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BXD Recombinant Inbred Mice

The whole brain gene expression dataset for the BXD recombinant inbredmice includes 30 recombinant
inbred strains and the two parental strains (C57BL/6J and DBA/2J). Each strain has four to seven biological
replicates for a total of 172 individual arrays. The whole brain mRNA for each naive 10-12 week oldmale
mouse was hybridized to a separate array, i.e., no pooling of samples.

The BXD data was normalized nine different ways. Five of the normalizationmethods use all of the probes in
the dataset. A probemask was created for the other four versions to eliminate probes whose sequences did
not match to the NCBI m37 Build, matched the genome inmultiple places, or harbored a SNP between any of
the 19 inbredmouse strains included in the public dataset (according to ImputedGenotype Resource from the
Jackson Laboratory; http://cgd.jax.org/datasets/popgen/imputed.shtml). Entire probe sets were eliminated if
less than four associated probes were eliminated. The version using the probemask and the RMA nor-
malizationmethod is the RECOMMENDED version.

For the eQTL analysis of this data set, a slightly different mask was used. Instead of eliminated probes with
SNPs between the 19 inbred strains, probes were eliminated if they contained a known SNP between the two
BXD parental strains, based on whole genome sequence data from the Sanger Institute (Keane et al 2011).
Expression values were normalized and summarized into probe sets using RMA. MAS5was used to evaluate
if expression level measurements were above background noise (present, absent, or marginal). If a probe set
did not have at least one present call throughout all samples, the probe set was dropped from the data set. Of
the 41,581 probe sets retained after masking, 30,031 probe sets remained after filtering by present/absent
calls. Data were thoroughly examined for batch effects related to processing. Themicroarrays were run over a
year and a half period, resulting in 15 batches. Both batches and strains contribute to non-random data dis-
tribution and a new method for removing batch effects, while retaining strain effects, was used (personal com-
munication, Evan Johnson, Boston University) on the set of 30,031 probe sets detected above background.
This method combines a simple rank test and a Bayesian hierarchical framework similar to the empirical
Bayes method, Combating Batch Effects When Combining Batches of Gene ExpressionMicroarray Data
(ComBat) (Johnson et al., 2007). This version of the data is available in the Download Resources section.

BXD Recombinant Inbred and Inbred Mice

This expression data set represents a combination of the two datasets previously mentioned. In this dataset
there are a total of 50 strains (C57BL/6J and DBA/2J are in both of the previous sets) and 253 individual
arrays. See the preceding topic for details on "masked" versions.

LXS Recombinant Inbred Mice

The whole brain gene expression dataset for the LXS recombinant inbredmalemice includes 59 recombinant
inbred strains (one strain (LXS49) was eliminated due to unresolved questions about true strain origin) and two
parental strains (ILS and ISS). Each strain has three to six biological replicates, for a total of 342 individual
arrays that passed quality control standards. In addition, to control for batch effects, C57BL/6J mice were
hybridized to arrays and included in every batch (35 individual arrays), and DBA/2J mice were included in a
few of the final batches (9 arrays). The whole brain mRNA for each naive 10-12 week oldmalemouse was
hybridized to a separate Affymetrix Mouse Exon Array 1.0 ST, i.e., no pooling of samples.

Individual probes were eliminated prior to normalization if their sequence did not match any part of the NCBI
m37 Build of themouse genome, if their sequencematchedmultiple locations in themouse genome, or if the
location in the genome that the probe didmatch contain a SNP between any of the 19 strains in the public
InbredMice dataset where genotype data is available at the ImputedGenotype Resource from the Jackson
Laboratory; http://cgd.jax.org/datasets/popgen/imputed.shtml (samemask that is implemented on Phe-
noGen). Entire probe sets were eliminated if less than three of the original probes remained after filtering.
Arrays were examined for quality, and arrays that did not meet quality standards were eliminated.
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Data from individual probes was normalized using RMA and summarized either into the full set of transcript
cluster or the core set of transcript clusters. In addition, RMA values for the full set of individual probe sets is
available for download from the resource page, but is not available for analysis on PhenoGen at this time.

Each data set was adjusted for batch effects using the empirical Bayes method outlined by Johnson et al
(2007). After batch effects adjustment, C57BL/6J and DBA/2J arrays were dropped from the data set. The ver-
sion using the probemask and the RMA normalizationmethod on the core transcript clusters is the rec-
ommended version and was used for calculation of eQTLs.

HXB/BXH Recombinant Inbred Rats

The whole brain gene expression dataset for the HxB/BxH recombinant inbred rats on the CodeLink Whole
GenomeRat Array includes data from 26 recombinant inbred strains, the two parental strains (SHR/Ola and
BN-Lx/Cub), and the SHR-Lx/Cub strain. The whole brain mRNA of four to seven naive 12-14 week oldmale
rats from each strain were hybridized to separate CodeLink Whole Genome rat arrays (one rat per array) for a
total of 139 arrays.

In addition to the five normalization versions available on the website, an "eQTL version" of the dataset that
was used for all HXB/BXH rat eQTL calculations is available. This version was obtained by first removing
probes from the datasets if they were one of the negative or positive controls placed on the array by theman-
ufacturer. Next, individual values were eliminated based on the quality flags assigned by the CodeLink Expres-
sion Analysis Software. Values were eliminated if they were flagged as M (spot was identified to be defective
through image inspection at manufacturing), C (spot has a high level of background contamination), I (spot
has an irregular shape), or S (spot has a high number of saturated pixels). Values were retained if they were
flaggedG (spot is good) or L (spot is below local background noise). Also, to be able to take the log base 2
transformation of the background-adjusted intensity values, all background-adjusted intensity values below
zero were replaced with the value 0.00001. The data was then normalized using a cyclic LOESS procedure
executed in R to account for themissing intensity values.

The HXB/BXH recombinant inbred panel also has four data sets available on transcription levels from the Affy-
metrix Rat Exon array. Data was collected on whole brain, left ventricle (heart), liver, and brown adipose tis-
sue (BAT) of 21 HXB/BXH RI strains (only 19 RI strains included in the BAT tissue data set) and 6 related
inbred strains. Each strain has three to four biological replicates for a total of 108 individual arrays from brain,
105 arrays from heart, 106 arrays from liver, and 96 arrays from brown adipose tissue that passed quality con-
trol standards. ThemRNA for each naive 10 week oldmale rat was hybridized to a separate Affymetrix Rat
Exon Array 1.0 ST, i.e., no pooling of samples.

Individual probes were eliminated prior to normalization if their sequence did not match any part of the RGSC
version 3.2 of the rat genome, if their sequencematchedmultiple locations in themouse genome, or if the loca-
tion in the genome that the probe didmatch contain a SNP between the BrownNorway (BN/SsNHsdMcwi)
inbred strains (reference strain) and the spontaneously hypertensive rat (SHR/OlaIpcv) strain that was
recently sequenced (Atanur et al 2010) using next generation sequencing or a SNP detected in DNA sequen-
cing of the BN-Lx/CubPrin and SHR/OlaIpcvPrin strains (samemask that is implemented on PhenoGen).
DNA sequence data for the BN/SsNHsdMcwi and SHR/OlaIpcv was downloaded directly from the Ensembl
ftp site at: ftp://ftp.ebi.ac.uk/pub/databases/ensembl/snp/rat/shr/.

For the 4,022,111 original probes, 604,601 were removed (472,072 did not map uniquely to the genome;
132,529 probes contained a SNP). Entire probe sets were eliminated if less than three of the original probes
remained after filtering. Arrays were examined for quality and arrays that did not meet quality standards were
eliminated.

Data from individual probes was normalized using RMA and summarized either into the full set of transcript
cluster or the core set of transcript clusters. In addition, RMA values for the full set of individual probe sets is
available for download from the resource page, but is not available for analysis on PhenoGen at this time.
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Each data set was adjusted for batch effects using the empirical Bayes method outlined by Johnson et al.
(2007). The version using the probemask and the RMA normalizationmethod on the core transcript clusters is
the recommended version and was used for calculation of eQTLs.
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Viewing Dataset Details
You can view details for datasets after you finalize them, before, during, and after quality control, grouping, nor-
malization, and after you save the results as a gene list.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.
3. Click theView link in theDetails column beside a dataset to view the details. You can also view the

dataset details when you click themagnifying glass beside the dataset name.
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TheDataset Details page displays information about the dataset, such as dataset name, organism, date
created, and quality control status. It shows the normalized versions and the arrays in the dataset.

Uploading Your Arrays

The arrays available for analysis on the website using the PhenoGenweb-based submission tool.

When you are logged into the PhenoGenwebsite, you can uploadmicroarray data (arrays). Each time an array
is uploaded, it is automatically assigned to the Principal Investigator associated with the user who uploads the
data.

Uploading an Array
1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Upload your own data. TheUpload Arrays page displays and shows a list of Microarray Exper-

iments you have entered.

3. Click Create New Experiment.
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Note: If you do not complete all the steps at once, follow steps 1-3, then click the experiment name, and
the creation process begins where you left off. Click the pencil icon to edit the whole experiment. See "Edit-
ing Your Experiments" for details.
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Creating an Experiment

4. Enter anExperiment Name.
5. Enter a description of the experiment.

Note:You should enter quality control information for any microarrays that failed quality control in
theExperiment Description field.

6. Choose one or moreDesign Type(s) and Experimental Factor(s). Click View beside each for a
description.

7. Click Next.

Certain protocols are required to enter your data, and there are public protocols available to everyone for
Extraction, Labeling, Hybridization, and Scanning. If you need protocols that are not listed, click Create New
in the appropriate section to enter a new protocol name and description.

Note:You can delete your private protocols if they have not been used in an experiment.
8. Choose the appropriate protocol from each applicable section.
9. Click Next. A message displays that informs you to continue, youmust download and enter data into,

an Excel spreadsheet.
10. Close themessage.
11. Click Download Empty Spreadsheet. An Excel spreadsheet with the same name as your experiment

is downloaded.
12. Open the file if you plan to enter your data immediately, or save the file.

Note: If you save, the file saves to the default download location for your current browser. See the
browser help for information on downloads.

Downloading the Spreadsheet and Creating Samples

Enter a row for each sample in your experiment.

Important!Youmust have Internet access when filling out the spreadsheet.

13. Enter theHybridization Name andSample Name.
14. Fill in as much information as you can for each row. Datamust be entered in the following fields to

ensure arrays display correctly in the PhenoGenwebsite. Optional fields and sections are not listed.

Basic Sample Properties

l Organism
l Sex
l Organism Part – E.g., "brain" for whole brain or "brain, left" for left hemisphere of brain.
l Sample Type – Inmost cases this will be "frozen".
l Development Stage – The developmental stage of the organism's life cycle during which the

biomaterial was extracted.
l Genetic Modification – If you do not find the appropriate modification, select Other, then enter

details. Note that the drop-down list provides options that become searchable in the PhenoGen
websiteBrowse Arrays page.

Protocol Details

l Extract Name
l Extraction Protocol – The procedure of extracting nucleic acid from the biomaterial.
l Labeled Extract Name
l Labeled Extract Protocol – The BioSample after labeling for detection of the nucleic acids.
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Hybridization Details

l Array Design Name – The array platform that was used.
l Hybridization Protocol – The process of incubating one or more labeled extracts with an

array.
l Scanning Protocol – The process of applying a solvent (e.g. water) or a solution (e.g.

SSC/SDS) to a BioMaterial or an array to remove impurities or unwanted compounds.
15. Save the file in Microsoft Excel 97 format with the same name as the experiment name (this is the

default file name).

Uploading the Completed Spreadsheet

16. Open the PhenoGenwebsite. If you are not already on theUpload Arrays page, chooseMicroarray
Analysis Tools, then click Upload your own data in theWhat would you like to do section.

17. Click Run in theSamples Defined column for your experiment.
18. Click Browse to find your Excel file.

19. Click Upload File. A message displays that states if the spreadsheet upload was successful and also
lists warnings and errors (if any). If you have errors, youmust fix the errors and upload the spreadsheet
again.

Uploading Data Files

After you upload the completed spreadsheet, youmust upload array files that correspond to each hybridization
in the spreadsheet.

20. Click Browse beside each hybridization to find your data file (CEL or TXT format).
21. Click Upload File(s)when each hybridization has an associated array file.
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22. Click Next after the files are uploaded.

Reviewing the Experiment

23. Click any of the links above the Arrays table to view details from that section of the spreadsheet. Your
options are:

l Basic Sample Details
l Additional Sample Properties
l Treatment Details
l Protocol Details
l Hybridization Details

24. Click the pencil icon to edit existing details for the displayed option (e.g., Basic Sample Properties).
Click the redX to delete an array.
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Finalizing the Submission

Important!After you finalize your submission, you cannot edit your experiment. See "Editing Your Exper-
iments" for instructions on editing before finalization.

25. Click Finalizewhen you are certain your experiment details are correct.
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Editing Your Experiments
If you want to change the experiment design types or factors of an experiment, youmust edit your experiment
and download a new empty spreadsheet.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Upload your own data. TheUpload Arrays page displays and shows a list of Microarray Exper-

iments you have entered.
3. Click the pencil icon beside the experiment you want to edit.

4. Proceed through the steps for "Creating an Experiment" on page 31.

Note:Youmust upload the completed spreadsheet again.
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Creating Datasets
Creating datasets comprises four steps:

"1. Retrieving Arrays" on page 36, to determine which arrays you want in the dataset.

"2. & 3. Selecting and Finalizing Arrays" on page 38, to add them to the dataset you are creating
and finalize the dataset with the selected arrays.

"4. Running Quality Control" on page 39, on the dataset and reviewing the results.

1. Retrieving Arrays

Arrays in the PhenoGenwebsite are uploaded into a local, MIAME-compliant database. There are public
arrays which are available to any user and semi-public arrays which users can use after they are granted per-
mission from the Principal Investigator responsible for the array.

Important! The PhenoGenwebsite uses a local database for storing information about arrays, and data
entered is only available on the PhenoGenwebsite. See "MIAME Overview" for details about theMinimum
Information About aMicroarray Experiment (MIAME) standard.

The PhenoGenwebsite allows you to take single or multiple arrays frommultiple lab experiments and com-
bine them into "in-silico" datasets. Each array is annotated as displayed on theArray Details page. The anno-
tation provides details such as species, gender, and array type. The set of arrays in the dataset can then be
grouped by a particular set of characteristics (e.g., treated vs. untreated) and analyzed using the tools pro-
vided by the website. The goal of such an analysis is a list of genes that can be further investigated.

When retrieving arrays, you can filter a number of ways:

l Platform Attributes
o Single or Two-Channel
o Array type (e.g., Codelink_Rat_Whole_Genome)

l Experiment Attributes
o Experiment name
o Design type

l Owner Attributes
o Principal Investigator

l Array/Sample Attributes
o Organism
o Genetic Modification (e.g., congenic strain)
o Sex
o Tissue (e.g., brain)
o Strain (e.g., 1 HXB)
o Genotype (e.g., hAC7 transgenic)
o Line (e.g., alcohol accepting)
o Hybridization Name contains...

l Compound Treatment Attributes
o Treatment (e.g., control)

l Duration
l Compound (e.g., saline)

o Dose

Although filtering is not required, it is recommended.
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The following image shows the Advanced Search to retrieve arrays. The Basic Search contains less filters.

Notes:
l Click Advanced Search to display more filtering options. Click Basic Search to display fewer

options.
l Your choices in the drop-down lists are based on the experiments that have been uploaded into Phe-

noGen and your selection of Single Channel or TwoChannel.
l Use the drop-down lists to narrow your criteria and limit the number of results that are returned.
l Leave the drop-down lists set toAll to return all the arrays in the database. This is NOT recommended.
l Type a specific array name in theHybridization Name contains field to retrieve only arrays that

match your input.
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2. & 3. Selecting and Finalizing Arrays

After you retrieve arrays, you can select the arrays that you want to be part of your dataset from the resultant
list. If theAvailability column shows "Access Required", the Principal Investigator who owns those arrays
must give you permission to access them if you want to include them in your dataset. Open access arrays do
not require permission to use and show "Public" in theAvailability column.

Note:Array data is the responsibility of the Principal Investigator (PI). When you select arrays for which
access is required, an email that requests access is sent to each of the Principal Investigators who are respon-
sible for the data. When you are granted permission, you receive an email at the address you provided during
registration.

If you want to review the array details, click View in theArray Details column to view the array information, or
click the experiment name.

After you select and add the arrays you want to your dataset, click theView/Finalize Dataset link at the right
to review andmodify the arrays in your dataset, and finalize the dataset. If you require permission to use any
of the arrays, your dataset remains inPending status until permission is granted.
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4. Running Quality Control

Quality control is an essential process when creating datasets. There are two quality control checks that
ensure that the arrays you want to combine are compatible. They are:

l "Array Attribution Comparison (Step 1)" on page 46
l "Array Integrity (Step 2)" on page 46

When you run quality control, a quality control check of the selected arrays in the finalized dataset is per-
formed. Arrays that are identified as questionable at any or all of the steps should be considered for deletion.
However, some of the small imperfections andminor concerns can be alleviated by an appropriate nor-
malizationmethod. See "Preparing Datasets".

For more details about the QC procedures commonly used for microarrays, see "Additional Quality Control
Sources" on page 160.
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Retrieving Arrays
1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Create a dataset from public and private arrays. The Retrieve Arrays page displays.

Basic Search:

3. Choose anOrganism and aGenetic Characteristic from the drop-down lists. The choices youmake
determine which other fields are available.

4. Choose a strain, line, genotype, tissue, and platform from the available options.
5. Click Get Arrays. Arrays that match all of the specified criteria display.

Advanced Search:

3. Click Advanced Search if you would like to choosemore filtering criteria. Or, choose options from the
Basic Search.
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4. Choose options from the drop-down lists in thePlatform Attributes section.
5. Choose options from the drop-down lists in theExperiment Attributes section.
6. Choose options from the drop-down lists in theOwner Attributes section.
7. Choose options from the drop-down lists in theArray/Sample Attributes section.
8. Enter the whole or partial array name in theHybridization Name Contains field.
9. Choose options form the drop-down lists in theCompound Treatment Attributes section.
10. Click Get Arrays. Arrays that match all of the specified criteria display.

Note:You can repeat the preceding steps as many times as necessary to retrieve arrays that match var-
ious criteria.
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Viewing Array Details

You can review details about the arrays on theArray Details page to determine if you want to select them for
your dataset.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Create a dataset from public and private arrays. The Retrieve Arrays page displays.
3. Retrieve arrays. See "Retrieving Arrays".
4. Click View in theArray Details column to view details about the sample and array.

Array Details are shown on six tabs: Sample Details, Experiment Details, Extract Details, Labeled Extract
Details, Hybridization Details, and File Name. Click the tab that contains the information that you want to
view.
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Selecting Arrays & Finalizing Datasets
After you retrieve arrays, you can select the ones you want to use in your dataset, then finalize the dataset.

Selecting Arrays for a Dataset

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Create a dataset from public and private arrays. The Retrieve Arrays page displays.
3. Retrieve arrays. See "Retrieving Arrays".

Notes:
l Use the drop-down list in theDisplay [number] arrays per page field to choose the number of

arrays to display.
l Click any blue column heading to sort the arrays by that column.

4. Click the arrays or the checkbox beside the arrays you want to add to your dataset. Click the checkbox
in the column header to select all arrays.

Notes:
l TheAvailability column shows array accessibility:

o Open access data shows Public.
o Semi-public data shows Access Required.
o If you requested access that has not yet been granted, the column shows Access Pend-

ing.
o When you receive permission to access an array, the column shows Access Approved.
o If you are denied access, the column shows Access Denied.

5. OPTIONAL: Click View in theArray Details column to view sample information for an array.
6. Click theAdd Selected Arrays to Dataset link when you have selected the arrays you want. A con-

firmationmessage displays. Click Close.
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7. Click View/Finalize Dataset link to view the dataset and the selected arrays. The Finalize Dataset
page displays.

Finalizing a Dataset

After you select the arrays you want to use in your dataset, you can finalize the dataset.

1. Enter aDataset Name andDescription.
2. Click Finalize Dataset. You dataset is finalized, and a confirmationmessage displays. Click Close.

Your dataset displays in the list of datasets, where you can run quality control, group and normalize, and save
the resultant gene list. If access to arrays is pending, the dataset shows Pending.

Quality Control Checks Overview
The PhenoGenwebsite runs two quality control checks to ensure that the arrays you want to combine are
compatible:

l Array Attribution Comparison
l Array Integrity

For more details about the QC procedures for commonly usedmicroarrays, see "Additional Quality Control
Sources" on page 160.

Array Attribution Comparison (Step 1)

The information for the arrays is compared, and discrepancies are listed for the user. A table displays. Attrib-
utes that differ within a category are highlighted in orange text:

l Sex l Individual Identifier

l Sample type l Individual genetic trait or genotype
l Development

Stage l Disease state

l Age l Separation technique

l Initial Time Point l Cell type or target cell type

l Organism Part l Cell line
l Genetic Mod-

ification l Strain

Array Integrity (Step 2)

The quality control process looks specifically at each array. There are two steps:

1. Each array image is individually checked usingmeasurements outlined by Affymetrix or CodeLink.
See"Guidelines for Assessing Affymetrix Data Quality" on page 47 and "Guidelines for Assessing
CodeLink Data Quality" on page 61.

2. Arrays within a dataset are compared. See "Within-Array Checks for Affymetrix 3' Arrays" and "Within-
Array Checks for Affymetrix Exon Arrays" on page 52.

Note:Neither step indicates definitively whether an array is "bad". Instead, youmust balance con-
siderations for quality of data and quantity of data with respect to the analysis at hand.

The output of this quality control check can be seen on tabs that displays graphs for determining whether the
arrays are ready for analysis.
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Guidelines for Assessing Affymetrix Data Quality

After you run quality control on Affymetrix datasets, graphs and tables display on individual tabs.

Notes:
l If you choose not to generate images when you run the quality control checks, the Pseudo Images and

MA Plots tabs have no images.
l Click the Download icon that displays at the top right when downloads are available, to download

the images from each tab.

See the following for explanations of the data that displays on each tab:

l "Within-Array Checks for Affymetrix 3' Arrays" on page 48.
l "Within-Array Checks for Affymetrix Exon Arrays" on page 52.
l "Model-based Checks for Affymetrix 3' Arrays" on page 50.
l "Model-based Checks for Affymetrix Exon Arrays" on page 54.
l "Pseudo Images (Affymetrix)" on page 57.
l "MA Plots" on page 59.
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Within-Array Checks for Affymetrix 3' Arrays

The within-array quality control checks are examined using the Bioconductor packageSimpleaffy. There are
four checks that are examined:

l Average Background Average background is examined to determine if it is consistent across arrays.
Affymetrix has indicated that typical background averages range from 20 to 100, but there is no sta-
tistically relevant range for these values to fall within.

l Internal Controls There are two internal house-keeping genes ( β-actin andGAPDH) that are used to
evaluate the RNA and assay quality. Three probe sets have been designed per control. The first probe
set measures the intensity of the 3' end of the gene, the second probe set measures the intensity of the
5’ end of the gene, and the third probe set measures the intensity in themiddle of the gene. The ratio of
the intensity from the 3' end to the 5' end should theoretically be around 1. According toWilson, et al.
(2004), ratios above 1.25 for GAPDH should be considered outliers and ratios over 3 for β-actin should
be considered outliers.

l Percent Present Affymetrix recommends the use of a normalization and summary method called
Microarray Suite 5.0 (MAS5). Within this normalization procedure, each probe set gives a Present, Mar-
ginal, or Absent call. The percent of present probe sets out of all probe sets on the array is used as a
quality control measure. Although the percent of present probe sets measured is highly dependent on
each specific experiment with respect to the number of genes you expect to be expressed, an
extremely low value raises suspicion about the quality of an array. Also, it is expected that duplicate
arrays have similar percent missing levels.

l Scaling Factors As part of the quality control procedure, intensities are normalized using theMAS5
procedure. Within the process of normalization, each array is adjusted by a scaling factor to get the
trimmedmean of all arrays to equal a target signal. This scaling factor indicates how much RNA was
hybridized onto the array. A wide variation of scaling factors across arrays can be a cause for concern.
Affymetrix defines a wide variation as a three-fold or greater difference.

TheSimpleaffy package from Bioconductor calculates the four within-array quality control check measures
from a group of CEL files and displays the results on a single QC Stats graph:
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Along the left side of the graph are the names of the CEL files that were included in this analysis. The next col-
umn has two numbers per CEL file. The top number is the percent present and the bottom number is the aver-
age background for that CEL file. It is expected that the average backgroundmeasures across arrays should
be similar and, ideally, below 100.

The percent present values are heavily dependent on the type of sample used on the array. If the same type of
tissue is used in all samples, the percent present values should be similar across arrays. However, if you
havemultiple tissue types such as liver and brain, the percent present values could vary substantially
between these tissues.

When the average backgroundmeasures display in red, it indicates that the values across arrays show a "con-
siderable amount of variation". When the percent present values display in red, it indicates that there is a
spread greater than 10% between the lowest and highest percentage.

The solid dots that are attached to a horizontal bar originating from the zero line represent the scale factors
(indicators of how much RNA was hybridized to the array) for each array. The blue shading is the region that
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spans three-fold below and three-fold above the average scale factor. In the graph above, all of the scale fac-
tors fall into this range. However, if one scale factor did not fall within the range, the dot and horizontal line for
that scale factor would display in red.

The intensity of the two internal control housekeeping genes is represented by open triangles and open dia-
monds andmeasures the quality of the hybridized RNA.

The open triangles represent the log base 2 of the 3' to 5' ratio for β-actin. In the graph above, a value of 0 for
the ratio would be ideal and a value above 1.6 would be a cause for concern. None of the ratios in the graph are
greater than 1.6.

Similarly, the open diamonds on the graph represent the log base 2 of the 3' to 5' ratio of GAPDH. This ratio
should be below 0.32. Again, none of the ratios are above the threshold.

Model-based Checks for Affymetrix 3' Arrays

Another package in Bioconductor looks at amodel-based quality control assessment. There are three assess-
ments that are examined at this stage; relative log expressions (RLE), normalized unscaled standard errors
(NUSE), and array pseudo-images. To calculate all three assessments, a probe level model must first be fit to
the data:

k = 1 ... K probe sets

i = 1 ... Ik probes

j = 1 ... J arrays

In this default model, βkj is the array effect, αki is the probe effect, and εkij is the residual error term. The
model can be adjusted to include other effects, but the default model is used for quality control purposes.

Relative log expressions (RLE) The relative log expressions for each probe represent that particular probe’s
deviation from themedian value of that probe across arrays. This quality assessment is dependent on the
assumption that most of the genes measured are expressed at similar levels across the arrays. The relative
logs are displayed as box plots. The expectation is that the relative log expressions should be evenly dis-
tributed around zero within each array, i.e., one array does not always have a higher intensity than all the other
arrays when looking at individual probes. Also, if one or more arrays have box plots that aremuch larger than
the other arrays, then these arrays tend to havemore outliers than the other arrays.
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The RLE graph above displays a variety of box lengths and several boxes that are not centered around 0. This
raises concerns about the distribution of the RLEs within arrays, but theseminor issues could be resolved
with normalization.

Normalized Unscaled Standard Errors (NUSE) The normalized unscaled standard errors represent the
standard error between probe intensities within a probe set on a specific array. These errors are normalized by
dividing by themedian standard error for that probe set across arrays. The expected distribution of NUSEs
within an array is centered about one. A higher value indicates that the array has more variance for that probe
set than the other arrays.
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The plot above is a concern because the six samples on the right side havemuchmore variation than the
other 14 samples. In other words, the variation between probes within a probe set is consistently higher in
these six samples. The extent of the variation indicates that the samples could be of poorer quality.

Within-Array Checks for Affymetrix Exon Arrays

The within-array quality control checks are examined using data from quality control reports produced by the
Affymetrix Power Tools and graphics from the Bioconductor packageSimpleaffy. Quality control measures
are based on an RMA normalization of the core transcript clusters. There are four checks that are examined:

l Average Background The average raw intensity value across probes used to calculated background.
The average is calculated on intensity values prior to any normalization. There is no relevant threshold
for this value. Look for consistency across arrays.

l Percent Present The proportion of all probe sets (transcript clusters) with an intensity value above
detection limits (p-value < 0.01). Although the percent of transcript clusters above detection limits is
highly dependent on each specific experiment with respect to the number of genes you expected to be
expressed, an extremely low value raises suspicion about the quality of an array. It is expected that
duplicate arrays have similar percent-missing levels.

l Pseudo Scaling Factors Represents the replicated scaling factor from the quality control measure
for the 3’ expression arrays. It is the ratio of the average raw intensity value of all probes on the array
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compared to the average raw intensity value across all arrays in the experiment. This value gives a gen-
eral idea of how ‘dim’ or ‘bright’ an array is. Most minor discrepancies among arrays are eliminated with
proper normalization.

l AUC for Distinguishing Positive and Negative Controls The positive and negative controls are
used in a receiver operating characteristic (ROC) analysis to assess the array's ability to distinguish
between the two, based on signal intensity. The area under the curve (AUC) is a descriptivemeasure
to assess this accuracy. An AUC of 1 indicates the perfect separation of positive and negative controls
based on signal intensity, while an AUC of 0.5 indicates that signal intensity cannot be used to dis-
tinguish between the two types of probes. The AUC can also be calculated based on detection above
backgroundmeasures.

Thesemeasures are displayed in a graphic similar to the one generated by theSimpleaffy package from Bio-
conducter for the 3’ Affymetrix arrays.

Along the left side of the graph are the names of the CEL files that are included in the analysis. The next col-
umn has two numbers per CEL file: the top number is the percent present and the bottom number is the aver-
age background for that CEL file.
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The percent present values are heavily dependent on the type of sample used on the array. If the same type of
tissue is used in all samples, the percent present values should be similar across arrays. However, if you
havemultiple tissue types such as liver and brain, the percent present values can vary substantially between
these tissues. By default, the percent present values are displayed in red if there is a spread greater than 10%
between the lowest and highest values within the experiment. It is expected that the average background
values across arrays should be similar. If they vary by more than 20 units, all values are given in red.

The solid dots that are attached to a horizontal line originating from the solid vertical line through 1 represent
the pseudo-scaling factors (indicators of how much RNA was hybridized to the array) for each array. The blue
shaded region is the area 30% above and 30% below the experiment average. Values that fall outside this
region are displayed in red.

The open circles and open triangles represent the AUC for distinguishing positive and negative controls
respectively, based on intensity values and detection above background values. According to Affymetrix,
“values between 0.80 and 0.90 are typical” (Quality Assessment of Exon andGene Arrays, 2007) for AUCs
based on signal intensity. AUC values based on detection above background tend to have values between
0.75 and 0.85.

Model-based Checks for Affymetrix Exon Arrays

For the Affymetrix Exon Array, twomodel-basedmeasures are explored that are similar to themodel-based
measures calculated for the Affymetrix 3’ Arrays. These are relative log expression (RLE) andmean of the
absolute deviation of the residuals (MAD). All measures are gathered from the summary report generated by
the Affymetrix Power Tools when the experiment is normalized using RMA on the core transcripts.

Absolute Relative Log Expression (RLE). The absolute relative log expressions for each transcript cluster
represent that particular transcript cluster’s absolute deviation from themedian value of that transcript cluster
across arrays. Displayed in the RLE figure for exon arrays is themean absolute relative log expression
across transcript clusters within an array and the standard deviation of this value within an array. Consistent
values across arrays are ideal. If an array has a higher mean or a significantly larger standard deviation, the
quality of this array may be suspect.
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The RLE graph above displays consistent results across samples. The final sample, DBA_3, appears to have
a higher mean RLE, indicating that the intensities for that particular array deviated to a greater extent from the
other arrays. However, small deviation is considered only aminor issue.

Absolute Deviation of Residuals (MAD) The absolute deviation of the residuals from themedian rep-
resents deviation of probe level intensities from those predicted, as opposed to the transcript cluster level devi-
ations examined in the preceding Absolute Relative Log Expression graphic. TheMAD graphic for exon arrays
(below) displays themean absolute deviation of the residuals from themedian for that probe across
probes/features within an array and the standard deviation of this value within an array. Consistent values
across arrays are ideal. If an array has a higher mean or a significantly larger standard deviation, the quality of
this array may be suspect.
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The exampleMAD graph above displays consistent results across samples. The final sample, DBA_3,
appears to have a higher meanMAD indicating that the intensities for that particular array deviated to a greater
extent from the other arrays. However, small deviation is considered only aminor issue.
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Pseudo Images (Affymetrix)

There are several different pseudo-images that you can inspect for artifacts that are not visible from the raw
images. The first image that is displayed shows (from left to right) the spatial distribution of the weights
involved in the estimation of the probe-level model outlined previously. In some sense, weights can be con-
sidered a "standardized" residual. They range from 0 to 1 where 1 is a small residual and 0 is a large residual
relative to the variance between residuals for the probe across all arrays.

The pseudo-image above looks good because the spots appear to be randomly scattered around the array,
rather than being concentrated in any one area. These images aremainly useful for finding spatial artifacts
that may be caused by scratches on the array, bubbles that occurred during processing, etc.

You can also look at the raw residuals using a pseudo-image, which represents the εkij value from the default
model equation. As opposed to the weights, you want to see values in these images that are close to zero,
which indicates that themodel is a good fit. There are also several options for looking at the residuals; viewing
both the positive and negative residuals on one array or separating them onto two different arrays. You can
view a pseudo-image that represents just the sign of the residual, not themagnitude. Following is an example
of each choice for the same array.
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The image at the top left has both negative (blue) and positive (red) residuals shown. The intensity of each
color represents themagnitude of the residual. The image in the top right shows only positive residuals. The
image in the bottom left shows only negative residuals. Finally, the image in the bottom right represents the
signs of the residuals only. In general, the plots show random distribution of color and intensity, indicating no
major artifacts of concern for this array.
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Some pseudo-images show a definitive ‘spot’ on the array.

Although some spots are obvious, Affymetrix requires that ‘artifacts’ must cover over 10% of the array for the
array to be considered poor quality. Themain reason for this is that the image above displays weights on the
probe level. Since probes from the same probe set are scattered about the array randomly, it is assumed that
the effect of these ‘bad’ probes will be eliminated when summarized into probe set values during the nor-
malization procedure.

MA Plots

AnMA plot is a scatter plot used to compare two arrays. The y-axis is the log-fold change and the x-axis is the
average log intensity between the two arrays. The example data uses 20 arrays, so instead of looking at each
pair-wise comparison, a "reference" array is used. The reference array in the following graphs is themedian
intensities across all arrays. The expectation is a random scatter plot, centered about the zero horizontal line.
TheMA plots that follow are for six arrays.
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The blue line in the graph is the zero reference line. The red line is the loess curve, fit to the actual data. The
topmiddle graph shows a "good" MA plot because the points are scattered evenly about the zero reference
line and the loess line is close to the zero reference line. The normalized data for the three bottomMA plots
shows some biases. Each of the loess curves has a downward slope at the higher average intensities, which
indicates that these arrays tend to have lower values than the other arrays in the sample at higher intensities.

The inter-quartile range (IQR) andmedian are also reported on theQuality Control Results page and each
graph. A compact IQR indicates that few genes are different, and there is less variation between arrays. A
larger inter-quartile range can indicate that many genes are differentially expressed or that there is more var-
iation between arrays. The IQR for the three bottom graphs is much larger than the IQR for the top center
graph. The four graphs with the downward sloping loess curve (bottom three and top right) are arrays that were
elevated in the NUSE graph.
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Guidelines for Assessing CodeLink Data Quality

Quality control for CodeLink arrays is measured using the distribution of probe intensities, Coefficient of Var-
iation, and a table that displays flags set by the proprietary CodeLink software. After you run quality control on
CodeLink datasets, graphs and tables display on individual tabs.

Notes:
l If you choose not to generate images when you run the quality control checks, thePseudo Images tab

has no data.
l Click the Download icon to download the images from each tab.

See the following topics for explanations of the data that displays on each tab:

l "Distributions of Probe Intensities" on page 62.
l "Coefficient of Variation" on page 63.
l "Pseudo Images (CodeLink)" on page 63.
l "CodeLink Software" on page 64.
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Distributions of Probe Intensities

The distribution of log expression values for each sample are represented as box plots. This quality assess-
ment depends on the assumption that most genes measured are expressed at similar levels across the
arrays. The expectation is that the log expression values within a sample should have a similar distribution
across samples: e.g., one array does not have a higher median expression value or one array does not show a
much wider interquartile range than the others.

In the following image, all six samples show a similar distribution; the boxes are of similar height and the
median expression value expressed by the thick horizontal bar within the box are all close to 5. When there is
quite a difference between boxes, a quantile normalization or a cyclic loess normalization will force samples
to have similar, if not identical, distributions.
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Coefficient of Variation

Coefficient of Variation (CV) is a statistical measure of the variation of data points in a data series around the
mean. It is calculated as follows:

CV = standard deviation / mean

In this case, the coefficient of variation represents the ratio of the standard deviation between probe inten-
sities within an array to themean probe intensity within that array. The CV values are represented on the fol-
lowing graph where a vertical line is dropped down from each CV point to link to its array. You should look for
CVs that are similar across arrays, paying particular attention to the range of CVs displayed.

The image that follows shows the CV for six samples from two different strains. Although there is a difference
between samples, note that the y-axis runs from 2.34 to 2.44 with only a difference of 0.10 betweenminimum
andmaximum values. Differences above 0.5may require further attention. Also notice that the higher values
are all from one strain while the lower values are all from another strain. When values are similar within some
biological trait, it is more likely that the differences seen are due to some underlying biological explanation
rather than a technical problem.

Pseudo Images (CodeLink)

If images are generated during quality control checks, the pseudo-images tab shows a spatial image of the
raw spot intensity for each array. When there is a pseudo-image generated, you should look for any major arti-
facts that would indicate an area of the array that has been compromised during the hybridization process. For
examples of good and bad pseudo images, see "Pseudo Images (Affymetrix)" on page 57.
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CodeLink Software

CodeLink proprietary software produces quality control flags that show the integrity of each probe on each
array. These flags may serve as an indication of inferior arrays. The table lists summary statistics for each
array, as well as the number of spots labeled with CodeLink Calls values. For example, arrays having high
number of CodeLink Calls other thanG (Good), compared to the other arrays within the dataset, can be con-
sidered for elimination. See "CodeLink Gene Filtering Procedures" for details about the Number of Probes key
(G=Good, L=Near bg signal, C=Contamination, CL=Contamination & Near bg signal, I=Irregular shape,
M=Masked, S=Saturated, IS=Irregular shape & Saturated, CI=Contamination & Irregular shape).

Running a Quality Control Check

After you create a dataset, youmust run a quality control check on it. Arrays that are identified as ques-
tionable at any of the steps should be considered for deletion. However, some of the small imperfections and
minor concerns can be alleviated by an appropriate normalizationmethod. See "Preparing Datasets".

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets. Datasets that require quality

control checks show Run in theQC Complete column.
3. Click the dataset on which you want to perform quality control. TheQuality Control page displays.
4. Choose whether you want to generate pseudo images from theQC run. If you do not generate images,

thePseudo Images andMA Plot (Affymetrix) tabs in the quality control results page do not display
results.

5. Click Run Quality Control Checks. A confirmationmessage displays. Click Close.
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The quality control checks take time, especially when you generate images. When the checks are complete,
an email is sent to the address you provided in theRegistration page, and you can view the results. If the qual-
ity control process encounters errors, youmust revise your array selection and re-run the quality control proc-
ess. See "Viewing and Approving Quality Control Results" for instructions on deleting chips.

Viewing and Approving Quality Control Results

After you run the quality control checks on your datasets, youmust view and approve the results.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.

Each dataset has one of these designations in theQC Complete column, to indicate the stage of the
quality control process:

l Run: The quality control checks need to be run.
l In Progress: The quality control checks are running.
l Review Results: The results of the quality control checks are available for review.
l Checkmark: The results of the quality control checks are approved.

3. Click a dataset withReview Results in theQC Complete column to review the results of the quality
control checks.

4. Review the information displayed on each tab.

If appropriate, click theDelete icon to delete an array from the dataset. If you delete an array, you
must re-run the quality control process.

5. Click theApprove Quality Control Results icon to approve the results.

Note: To see the approvedQuality Control Result for a dataset, chooseMicroarray Analysis Tools in

themainmenu, click Analyze precompiled datasets, then click theView Details icon in theQC
Results column.
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Quality Control Results

The quality control results page displays tabs to separate the types of quality control checks. TheArray Com-
patibility tab displays the results of the Array Attribution Comparison. The remaining tabs display the results
of the Array Integrity Checks.The tabs that display depend on whether the dataset contains CodeLink or Affy-
metrix data. See "Quality Control Checks Overview" for details.

Each tab after theArray Compatibility tab displays a graph of the results. If you did not choose to display
images when you ran the quality control check, thePseudo Images tab and theMA Plot tab (Affymetrix
only) do not contain images. See "Guidelines for Assessing Affymetrix Data Quality" and "Guidelines for
Assessing CodeLink Data Quality" on page 61 for an explanation of the data that displays on each tab.

Note: Click theDownload icon that displays at the top right when downloads are available, to down-
load the images from each tab.
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Preparing Datasets
After you finalize a dataset, run the quality control checks on the dataset, and approve the quality control
results, your dataset is ready to be grouped and normalized, as indicated by the word "Run" in theArrays
Grouped and Normalized column on theView Datasets page.

Grouping
Data grouping allows you to group arrays and normalize data across groups. Data is then in a state where sta-
tistical analysis can be performed. You can createmultiple groupings and normalize each groupingmultiple
times. After you create and normalize a grouping of arrays, a checkmark displays in the Arrays Grouped and
Normalized column.

Groups

The term "group" is used to indicate an analysis group. For example, if you analyzemouse data for differential
expression betweenmales and females, group 1 can be all the samples from femalemice, and group 2 can be
all the samples frommalemice. For inbred strains, replicate samples within a group can be considered bio-
logical replicates, because even though the samples are two different animals, it is assumed that the gene
expression is similar (if not exactly the same) between the two samples.

You can choose groups by:

l Array attribute.
l Previous saved group combinations.
l User-created categories.

Normalization

The purpose of normalization and background correction is to remove systematic noise and reduce technical
variation. To normalize in the context of DNA microarrays means to standardize your data to be able to dif-
ferentiate between real (biological) variations in gene expression levels and variations due to themeas-
urement process. Normalizing also scales your data so that you can compare relative gene expression levels.
In general, the normalization process is subdivided into four sequential steps:

1. Background correction.
2. Data normalization.
3. Adjustment for non-specific binding (Affymetrix arrays only).
4. Data summary methods (Affymetrix arrays only).

The options for normalizing data are based on array platform:

Affymetrix 3' Arrays Affymetrix Exon
Arrays

CodeLink Arrays

o MAS5.0
o dChip
o RMA (rec-

ommended)
o VSN
o GCRMA

o RMA
o PLIER

o None
o Loess (rec-

ommended)
o VSN
o LIMMA

Many normalizationmethods have been developed over the years sincemicroarrays first hit themarket.
These different normalizationmethods have the potential of yielding very different results in candidate gene
searches. Some researchers choose to run their analysis using a couple different normalizationmethods and
then choose the candidate genes that are identified regardless of normalizationmethod. For Affymetrix, RMA
and the closely related gcRMA are themost common normalizationmethods published. For CodeLink, the
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paper cited in the followingReferences section gives an in-depth comparison of normalizationmethods and
concludes cyclic Loess to be themost accurate.

References

WuW, Dave N, TsengGC, Richards T, Xing EP, and Kaminski N (2005). Comparison of normalizationmeth-
ods for CodeLink Bioarray data. BMC Bioinformatics 6:309.

NormalizationMethods

MAS 5.0

Micro Array Suite Version 5.0 (MAS5) is implemented in both theMAS 5.0 software package from Affymetrix
and in theAffy package in R. The PhenoGenwebsite application uses themas5 function in R. Signal cal-
culation usingMAS 5.0 consists of fivemain steps.

The first step adjusts the raw intensities for a global background by organizing the array into zones. Within
each zone, the lowest 2% of intensities are used as an estimate background for that zone. The transition
between zones is smoothed by taking a weighted estimate of background for each point where the weights
are based on distances from zone centers. The second step calculates an "ideal" mismatch (IM) intensity to
adjust the perfect match intensity with the goal of eliminating background cross-hybridization and stray signal.
The IM value is used instead of themismatch (MM) value to ensure that the resulting signal (PM-IM) is pos-
itive. The third step transforms the intensity values with a log base 2 transformation. The fourth step combines
probe values within a probe set using the one-step Tukey’s biweight algorithm, which "weights" the data to
reduce the influence of outliers. The fifth and final step scales all probe sets after conversion back to the orig-
inal intensity scale, i.e., not log base 2 transformed, to a target probe set intensity (500 by default). After the
MAS 5.0 procedure is complete, all intensity values are transformed using a log base 2 in preparation for sta-
tistical analyses.

References

1. Affymetrix (2001). Statistical algorithms reference guide. Technical report Affymetrix.
2. Hubbell E, LiuW-M, Mei R (2002). Robust estimators of expression analysis. Bioinformatics

18(12):1585-1592.
3. LiuW-M, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, HoM-H, Baid J,

Smeekens SP (2002). Analysis of high density expressionmicroarrays with signed-rank call algo-
rithms. Bioinformatics 18(12):1593-1599.

PLIER (Probe Logarithmic Intensity Error)

Probe Logarithmic Intensity Error Estimation (PLIER). The PLIER algorithm is amodel-basedmethod that
includes “experimentally observed patterns for feature behavior and handling error appropriately at low and
high abundance”. The probe, or "feature", intensities are first pre-processed by quantile normalization to scale
expression values across arrays. Intensities are then adjusted for background noise by subtracting the
median intensity of control probes with similar GC content. All feature intensities for a probe set are used to
calculate a feature response; “ameasure of how much the relative intensity of a feature is due to the feature
itself, as opposed to the common target of a probe set”. After taking into account the difference in features
within a probe set, intensity values across features are combined using a weighting scheme that down-
weights probes with inconsistent behavior. Finally, a mixed error model is used to account for the differences
in appropriate error models depending on the abundance of the transcript.

References

1. Guide to Probe Logarithmic Intensity Error (PLIER) Estimation, Affymetrix Tech Note, 2005.
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dChip (Perfect Match Probes Only)

DNA-chip Analyzer (dChip) is a software package that implements themodel proposed by Cheng Li andWing
HungWong. This model is also referred to as the Li Wongmethod and the resulting values are considered
model-based expression indexes (MBEI). The PM-only model fits the followingmodel to each gene:

Where:

PMij is the intensity for perfect match probe of probe pair j on the ith array.

νj is the baseline response of the jth probe due to nonspecific binding.

θi is the expression index of the gene in the ith array.

is the sensitivity of the PM probe of the probe pair j.

εij is the random error.

Parameter estimates are determined through iteration. The R code used for normalization on the PhenoGen
website is not identical to the code used in Li andWong's stand-alone program, dChip. Therefore, nor-
malization on the website might differ slightly from normalization derived from the dChip program. After the
dChipmethod is completed, all intensities are transformed using a log base 2 in preparation for statistical anal-
yses.

References

1. Li C, WongWH (2001). Model-based analysis of oligonucleotide arrays: expression index computation
and outlier detection. Proc Natl Acad Sci U S A 98(1):31-6. (uses both PM andMM probes)

2. Li C, WongWH (2001). Model-based analysis of oligonucleotide arrays: model validation, design
issues, and standard error application. Genome Biology 2(8):1-11. (uses only PM probes)

RMA

Robust Multi-Chip Average/Robust Multi-Array Analysis (RMA). RMA pre-processing consists of threemain
steps: background correction, normalization, and summarization of probe level intensities in probe sets. RMA
uses a background correctionmethod to account for optical noise and non-specific binding using only the per-
fect-match probes. The background-corrected probe intensities are then transformed using log base 2 and nor-
malized using quantile normalization. Finally, the probe intensities are combined using amedian polish to get
one intensity for each probe set or transcript cluster. The log base 2 transformation of intensity values occurs
within the RMA procedure, so a separate transformation is not needed.

For the Affymetrix Exon Arrays, determine the probe sets to include, based on confidence in annotation (core,
extended, and full), by summarizing on either the exon level or gene level. For more details, see the Affymetrix
GeneChip ® Exon Array whitepaper, Exon Probeset Annotations and Transcript Cluster Groupings (2005).

References

1. Bolstad BM, Irizarry R A, AstrandM, and Speed TP (2003). A Comparison of NormalizationMethods
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VSN

Variance stabilization (VSN). The goal of variance stabilization is to transform the data in such a way as to
eliminate the dependence of the variance on themean. The VSN accounts for both background correction and
normalization by scaling and shifting the original intensity and then using the inverse of the hyperbolic sine as
a variance stabilizing transformation.

For Affymetrix data, this normalizationmethod is implemented in the Affy vsnrma() procedure. The VSN trans-
formation is done at the probe level on the PM probes only, and then the probe level intensities are combined
into a probe set intensity using amedian polish. Affymetrix data is transformed to log base 2 within the VSN
procedure.

For CodeLink data, this normalizationmethod is implemented by choosing either the 'vsn' or the 'limma'
options on the website. If the 'vsn' option is chosen, it is implemented using the vsn2() procedure in R and the
values are on the natural log scale. If the 'limma' option is chosen, it is implemented using the nor-
malizeBetweenArrays() procedure, and values are on the log base 2 scale. In either case, data values are
background corrected before VSN is implemented.

Finally, for both Affymetrix and CodeLink data, a quantile of 0.5 is used for the least-trimmed sum of squared
(LTS) regression for the estimation of parameters. This is themost robust value (i.e., a value of 1 offers no pro-
tection to outliers and 0.5 offers themost).
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GCRMA

G/C Robust Multi-Array Average (GCRMA). TheGCRMA method is related to the RMA method described pre-
viously, in that GCRMA also uses quantile normalization on the log base 2 probe values and amedian polish
to summarize probes into a probe set. However, the difference lies in the background adjustment. The RMA
method does not account for probe affinity when calculating background. For GCRMA, the estimate for non-
specific binding is related to the base composition of the nucleic acid molecules, i.e., the proportion of G and
C bases present in the probe sequence.
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LOESS

Locally Weighted Scatterplot Smoothing (LOWESS/LOESS). When applied to normalization of CodeLink
arrays, this method is also referred to as cyclic loess. This method is an iterative approach that is based on
theMA plot. For each distinct pair of arrays, the data is plotted using anMA plot (difference in log base 2
values versus the average of log base 2 values). A loess curve using a one-degree polynomial is fit to each
graph. This loess curve is used to estimate an adjustment for each value. The average adjustment for all pair-
wise comparisons for a particular probe is used to obtain starting values for that probe and array in the next iter-
ation. This method is implemented using the normalize.loess function in R. Initially, expression values from
CodeLink are adjusted for background, i.e., spot mean-backgroundmedian. Because this can result in
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negative values, expression values less than 1 are re-coded to 1. Expression values are transformed using a
log base 2 before LOESS normalization. You can fit the loess curve using a weighted least-squares approach
(family.loess=gaussian) or a re-descendingM estimator with the Tukey's biweight function (family.loess="-
symmetric").
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LIMMA

Linear Models for MicroArrays (LIMMA). LIMMA refers to the package that is used in R. Two normalization
methods are available under this method: scale and quantile.

l Scale –Data is background corrected, values less than 1 are re-coded to 1, and all values are log base
2 transformed. Values are then scaled so that themedian absolute deviations (MADs) are the same
across arrays.

l Quantile –Data is background corrected, values less than 1 are re-coded to 1, and all values are log
base 2 transformed. Values are then adjusted so that each array has the exact same distribution of
intensities. This gives the same results as the normalize.quantiles function in R.
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Eliminating Probes with Poor Sequence Integrity
Probemasks were created for the Affymetrix Mouse 430 version 2 array, the Affymetrix Mouse Exon array,
and the Affymetrix Rat Exon array to eliminate probes whose sequence did not match to the reference
genome (NCBI m37 build for themouse arrays and RGSC version 3.2 for the rat array), matched the genome
inmultiple places, or harbored a SNP. For themouse arrays, SNPs were derived from the 19 strains in the pub-
lic InbredMice dataset where genotype data is available at the ImputedGenotype Resource from the Jackson
Laboratory; http://cgd.jax.org/datasets/popgen/imputed.shtml (129P3/J is not available). For the rat array,
SNPs were derived from comparing the full genome sequence of the BrownNorway (BN) Inbred strain to the
Spontaneously Hypertensive Rat (SHR) strain that was recently sequenced (Atanur et al 2010) using next-
generation sequencing. We also included SNPs identified from our sequencing of the DNA (Phred quality
score > 150) of the parental strains of the HXB/BXH panel (SHR/OlaPrin and BN-Lx/CubPrin).

Entire probe sets were eliminated if less than four probes remained for the 3' array or less than three probes
remained for the exon array. For the Affymetrix Mouse 430 version 2 array, 68,002 probes were eliminated
because they did not align uniquely to the genome, and 39,430 additional probes were eliminated because
they targeted a genomic region with a known SNP. Of the original 45,101 probe sets on the array, 41,485
remain after masking. For the Affymetrix Mouse Exon array, 329,422 probes were eliminated because they
did not align uniquely to the genome, and 913,592 additional probes were eliminated because they targeted a
genomic region with a known SNP. Of the original 1,180,331 probe sets from the full annotation on the array,
900,079 remain after masking. For the Affymetrix Rat Exon array, 472,072 probes were eliminated because
they did not align uniquely to the genome, and 132,529 additional probes were eliminated because they tar-
geted a genomic region with a known SNP. Of the original 887,561 probe sets on the array from the full anno-
tation, 721,150 remain after masking.
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Grouping and Normalizing Datasets
Your dataset is ready to be grouped and normalized, when the wordRun displays in theArrays Grouped and
Normalized column on theView Datasets page.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.
3. Click the dataset you want to group.
4. Select the parameters of the group:

l Create groups automatically:Choose a criterion from theCreate groups based on the fol-
lowing drop-down list. The list contains attributes whose values differ amongst the arrays in the
dataset, and the samples are sorted into groups automatically. If your experiment contains
arrays from replicate lines, Replicate Dataset displays in the list.

OR

l Create a group manually:Manually add samples to theGroup orExclude columns.

Notes:
l Click theCreate Additional Group link, at the top right of the table, to create a new group.
l Click Name this Group in the column headings to enter a descriptive name.

5. Enter a name for the grouping, and click Next.
6. Select the grouping you want to use for this normalized version from the list.
7. Select a NormalizationMethod from the drop-down list. See "Normalization" for details.
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Normalizing Affymetrix Arrays

If you have an experiment with Affymetrix arrays, choose one of the following options and proceed to
step 8:

l MAS5 (method implemented in Affymetrix GeneChip 5 software).
l dChip (DNA chip analyzer).
l rma (robust multi-array averagemethod).
l vsn (variance stabilization normalizationmethod).
l gcrma (G/C robust multi-array average).
l plier (Exon arrays only)

Normalizing CodeLink Arrays

If you have an experiment with CodeLink arrays, choose one of the following options and proceed to
step 8:

l None.
l Loess (Locally Weighted Scatterplot Smoothing) - Select gaussian or symmetric from the

drop-down list that displays.
l vsn (variance stabilization normalizationmethod) - Select Lts.quantile andNumber of iter-

ations from the drop-down lists that display.
l LIMMA (Linear Models for MicroArrays) - Select the Limma method from the drop-down list

that displays.
8. Enter a version name for this normalized version of the dataset.
9. Click Next. The normalization process takes time. When it is complete, you receive an email.

Important! You can group and normalize the same dataset any number of ways. Each is saved .

Analyzing Datasets
A "dataset" in the PhenoGenwebsite is created using a collection of arrays from one or more lab experiments.
You can create datasets using arrays in the PhenoGen database that are public or that you have been granted
access to use. There are also four pre-compiled "Public" datasets. These can be used by all registered users
for correlating phenotype data with gene expression data in inbred and recombinant inbredmice and rat
strains.

After you group and normalize a dataset, you can analyze it. Data analysis consists of:

1. Filtering out noise by applying optional filters that allow you to eliminate certain probe sets from further
analysis.

2. Identifying statistically significant genes using statistical analysis tools.
3. Saving the resultant set of probes or probe sets as a gene list.

The above steps can be further broken down into the following process:

1. Select a single normalized dataset version.
2. Choose the type of analysis to perform:

Differential Expression

l Proceed to Step 3, Filter genes.

Correlation Analysis

73



a. Create a behavioral phenotype data file off line. See "Uploading Phenotype Data" for the
required format.

b. Upload the phenotype data file.

c. Proceed to Step 3, Filter genes.

Clustering

l Proceed to Step 3, Filter genes.
3. Filter genes.
4. Perform statistical analysis or clustering.
5. Save gene lists or cluster results.

Filtering
A typical microarray consists of thousands of probe sets (10,000 - 1,00,000), and the introduction of mean-
ingless noise is inevitable. Removing this noise increases the chances of finding significant genes. The Phe-
noGenwebsite provides various gene filteringmethods for filtering out genes prior to running statistical
analysis. For differential expression analysis and correlation analysis, the filters are based on the types of
arrays used in the dataset. See:

l "Affymetrix Gene Filtering Procedures" on page 74
l "CodeLink Gene Filtering Procedures" on page 76

For clustering analysis, the filters are also based on the types of arrays in the dataset, but additional filters
based on gene expression values are also available. See:

l "Clustering Filtering Procedures" on page 78

Note: The PhenoGenwebsite does not provide custom array filtering.

Affymetrix Gene Filtering Procedures

Affy Control Gene Filter

Use theAffy Control Gene Filter to remove internal control probes from the analysis. Affymetrix technology
uses house-keeping genes' intensity values as ameans for quality control. A pre-determined concentration of
these control genes was spiked into the cRNA target mixture prior to application onto themicroarrays. The
measured intensity values are used for internal quality control. Since these control genes are typically from dif-
ferent species, they have little importance to the analysis.

MAS5 Absolute Call Filter

Use theMAS5 Absolute Call Filter to either keep or remove probes based on their present or absent call. The
MAS5 algorithm uses probe-pair intensities to generate a detection p-value and assign a Present, Marginal, or
Absent call. Each probe pair in a probe set has a potential vote in determining whether themeasured transcript
is detected (Present) or not detected (Absent). The vote is described by a value called the discrimination
score [R]. The score is calculated for each probe pair and is compared to a predefined threshold Tau. Probe
pairs with scores higher than Tau vote for the presence of the transcript. Probe pairs with scores lower than
Tau vote for the absence of the transcript. The voting result is summarized as a p-value. The greater the
number of discrimination scores calculated for a given probe set that are above Tau, the smaller the p-value
and themore likely the given transcript is truly present in the sample. The p-value associated with this test
reflects the confidence of the detection call.

The detection p-value cut-offs, alpha 1 (α1) and alpha 2 (α2), provide boundaries for defining Present, Mar-
ginal, or Absent calls. At the default settings determined for probe sets with 16 - 20 probe pairs (defaults α1 =
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0.04 and α2 = 0.06), any p-value that falls below α1 is assigned a Present call, and above α2 is assigned an
Absent call. Marginal calls are given to probe sets which have p-values between α1 and α2.

DABGAbsolute Call Filter

Analogous to theMAS5.0 present/absent calls from the Affymetrix 3’ Array, each probe set on the Affymetrix
Exon array is given a p-value associated with the hypothesis that the intensity values can be distinguished
from background noise. This p-value is referred to as the detection above background (DABG). It is generated
by comparing each probe in the probe set to a set of background probes with similar GC content. The probe-
level p-values are combined into a DABG p-value on the probe set level. For this filter, probe set with a p-value
less than 0.0001 is considered “present” and a probe set with a p-value greater than or equal to 0.0001 is con-
sidered “absent”.

Heritability Filter

Use theHeritability Filter to limit the probe sets analyzed to those with a high genetic heritability. This filter
eliminates probe sets for transcripts whose environmental influence on expression is high compared to the
strict genetic influence. For analyses on the Affymetrix Mouse 430 version 2 array, the broad sense heritability
has been calculated on the public inbredmouse panel (20 strains) normalized using RMA with poor quality
probes eliminated prior to normalization and the public BXD recombinant inbredmouse panel (32 strains) nor-
malized using RMA with poor quality probe eliminated prior to normalization.

For analyses on the Affymetrix Mouse Exon array, the broad sense heritability has been calculated on the
core transcript clusters from the public LXS brain recombinant inbredmouse panel normalized using RMA
with poor quality probes eliminated prior to normalization. For analyses on the Affymetrix Rat Exon array, the
user must choose the tissue of interest (brain, heart, liver, or brown adipose tissue). The broad sense her-
itability has been calculated separately for each tissue on the core transcript clusters from the public
HXB/BXH recombinant inbred rat panel normalized using RMA with poor quality probes eliminated prior to nor-
malization.

The broad sense heritability is calculated for each probe set/transcript clusters separately using an ANOVA
model. Because the public data sets are based on the Affymetrix Mouse 430 version 2 array, the Affymetrix
Mouse Exon arrary, and the Affymetrix Rat Exon array, the Heritability filter is only available for data sets on
these chips. Use either panel's heritability values for this filter and specify aminimum heritability threshold for
inclusion. All filtering is done on the probe set or transcript cluster level.

eQTL/bQTL Filter

Another way to prioritize genes for analysis is to limit those considered to be genes whose transcription levels
are controlled from the same genetic region that controls the phenotype/behavior of interest (e.g., Tabakoff et
al. 2009). We have identified expression quantitative trait loci (eQTL) for probe sets from the BXD recom-
binant inbred panel on the Affymetrix Mouse 430 version 2 array, for core transcript clusters from brain tissue
of the LXS recombinant inbredmouse panel on the Affymetrix Mouse Exon Array, and for core transcript
cluster from brain, heart, liver, or brown adipose tissue of the HXB/BXH recombinant inbred rat panel on the
Affymetrix Rat Exon Array.

When data sets are created based on any of these three array technologies, the respective eQTL data sets
are used. When using the HXB/BXH recombinant inbred rat panel, the user must choose the correct tissue.
The user also chooses a significance threshold for eQTL and the appropriate bQTL to compare to. Probe
sets/transcript clusters are retained if their eQTL is significant and the location of themarker (SNP) with the
maximum association with transcript expression is within the chosen bQTL limits. All filtering is done on the
probe set or transcript cluster level.

Gene List Filter

Filtering by Gene List allows you to select a gene list that has been previously created and either keep or
remove all the genes within that gene list.

75



CodeLink Gene Filtering Procedures

CodeLink Control Gene Filter

There are three basic types of CodeLink probes that are used in the Control Gene Filter:

l (D) Discovery - The probes corresponding to the genes of interest for a particular species.
l (P) Positive controls - The bacterial probes corresponding to bacterial transcripts that are spiked in at

the total RNA level and are used to evaluate the sensitivity and dynamic range of the platform.
l (N) Negative controls - The bacterial probes used for evaluating the degree of non-specific assay

background and negative control threshold.

When this filter is complete, both P and N are removed.

CodeLink Call Filter

Use theCodeLink Call Filter to remove internal control probes from the analysis. The CodeLink Call filter is
based on the quality control flag results measured from the imaging software; CodeLink Expression v4.1 algo-
rithm. The flags are:

Flag Description
G The spot has passed all quality control measures and is defined as good.

M The spot is identified in the MSR (Manufacturing Spot Removed) File and no intensity data is pro-
vided. The probe was masked after printing because it represented a suboptimal probe. Data from
these spots is disregarded.

C The spot has a high level of background contamination. Its background is above the global back-
ground population.

I The spot has an irregular shape.

L The spot has a near background signal.

S The spot has a high number of saturated pixels, typically above 60,000 units.

A spot may receivemore than one quality control flag. For example, it may be labeled CI if it has both back-
ground contamination and an irregular shape.

For the filter, you can specify the number of samples with either a G (Good) flag or an L (Low) flag needed, to
keep or remove the probe from further analysis. Samples that have any of the other flags are not counted
towards the number of samples needed for retention or elimination.

GeneSpring Call Filter

TheGeneSpring Call Filter uses present/absent calls generated from the imaging software, which was
designed tomimic the present/absent calls generated by GeneSpring software for Affymetrix data. The P
(present), A (absent), M (marginal), and U (unknown) calls are based on the quality control flags listed in the
CodeLink Call Filter.

l (P) Present Call - The spot receives a P call if it has aG quality control flag.
l (A) Absent Call - The spot receives an A call if it has an L quality control flag.
l (M) Marginal Call - The spot receives anM call if it has a C, I, or S quality control flag.
l (U) Unknown Call - The spot receives a U call if it has anM quality control flag.

Like the CodeLink Call Filter, you can specify the number of samples with either a P (Good) call or an A (Low)
call needed to keep or remove the probe from further analysis. Samples that have anM or U call are not
counted toward the number of samples needed for retention or elimination.
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Median Variance Filter

Use theMedian Variance Filter to retain probes with greater variation than themedian variation gene. Genes
whose expression does not vary are unlikely to be differentially expressed. Since it is likely that most genes
are not differentially expressed or associated with a particular phenotype, themedian variance across all
genes is a reasonablemodel of null variation; i.e., the variation due to other factors. The variance (s2) is cal-
culated across all subjects for each gene. The null hypothesis is that these variances represent random and
normally distributed noise. For each gene, the statisticW = (N-1)s2/median(s2) is computed, whereN is the
number of observations of the gene. It is approximately chi-square distributed withN-1 degree of freedom
[(Rosner, 2000), p246]. The system calculates a p-value for rejecting the null hypothesis and performs the
False Discovery Rate (FDR)multiple testing correction (Benjamini & Hochberg 1995), setting the FDR to
10%. The result is a list of genes with significantly greater variation than themedian variation across genes
with, at most, 10% of that list including genes that have true variation less than, or equal to, median variation.

References

1. Fundamentals of Biostatistics. Bernard Rosner, 5th edition Duxbury Thomson Learning. Pacific
Grove, CA USA

2. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach
tomultiple testing. J R Stat Soc B 57:289–300

Coefficient Variation Filter

Use theCoefficient Variation Filter to remove probes whose variation across samples is higher than a thresh-
old. The Coefficient Variation filter measures the consistency of the probes across all samples. The coef-
ficient of variation (CV) of each probe is calculated as standard deviation divided by mean. A high CV value
reflects inconsistency among the samples within the group. For a two-group comparison study, the CV of
each group is calculated independently. You can predefine a cutoff value, where genes with CVs above the
cutoff value are removed. You can also define different cutoff thresholds to control the consistency levels of
the genes.

Negative Control Filter

Use theNegative Control Filter to keep or remove probes based on whether the negative control probes are
above or below detection limits. The negative control probe filter takes advantage of the negative controls on
the CodeLink arrays to create thresholds for detection. Detection limits are calculated for each array individ-
ually based on the negative controls on that array only. The detection limit is equal to themean plus two stand-
ard deviations of the set of negative probes with the highest mean. Both themean and standard deviation are
calculated based on a 5% trimmed data set.

Heritability Filter

Use theHeritability Filter to limit the probes analyzed to those with a high genetic heritability. This filter elim-
inates probes for transcripts whose environmental influence on expression is high compared to the strict
genetic influence. Broad sense heritability has been calculated on the public HXB/BXH recombinant inbred rat
panel normalized using cyclic LOESS. The broad sense heritability is calculated for each probe separately
using an ANOVA model. Because the public data sets are based on the CodeLink Whole GenomeRat Array,
this filter is only available for data sets on that chip. A minimum heritability threshold for inclusionmust be
specified. All filtering is done on the probe level.

eQTL/bQTL Filter

Another way to prioritize genes for analysis is to limit those that are considered to genes whose transcription
levels are controlled from the same genetic region that controls the phenotype/behavior of interest (e.g., Taba-
koff et al. 2009). We have identified expression quantitative trait loci (eQTL) for probes from brain tissue of the
public HXB/BXH recombinant inbred rat panel normalized using cyclic LOESS. The user chooses a sig-
nificance threshold for eQTL and the appropriate bQTL to compare to. Probes are retained if their eQTL is sig-
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nificant and the location of themarker (SNP) with themaximum association with transcript expression is
within the chosen bQTL limits. All filtering is done on the probe level.

Gene List Filter

Filtering by Gene List allows you to select a gene list that has been previously created and either keep or
remove all the genes within that gene list.

Clustering Filtering Procedures

Variation Filter

Filter by Variation to reduce the number of probes considered for the clustering analysis by only retaining the
genes with the largest variance across all samples (group is not accounted for in this calculation). You can indi-
cate how many probes to retain by either specifying a percent or an exact number.

Fold Change Filter

Filter by Fold Change to reduce the number of probes considered for the clustering analysis by retaining
probes with the largest difference between themaximum expression value for that probe and theminimum
expression value for that probe. You can indicate how many probes to retain by either specifying a percent or
an exact number.

Types of Statistical Analysis

The PhenoGenwebsite provides three different types of analyses that can be performed on your "in-silico"
dataset:

l "Differential Expression Analysis" on page 79
l "Correlation Analysis" on page 81
l "Clustering Analysis" on page 83

Note:Youmust upload phenotype data for a dataset version if you want to run correlation analysis. See
"Using Phenotype Data in Correlation Analysis" for details.

For Exons only, aPrevious Analysis section displays if the dataset has been previously analyzed. Previous
analyses expire after seven days.
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Differential Expression Analysis

The ultimate goal of differential expression analysis is to select genes whose expression values are sig-
nificantly different between two or more groups of samples. Statistical tools are available for the following
types of analysis:

l Differential expression in two groups.
l Differential expression using one-way ANOVA.
l Differential expression using two-way ANOVA.
l Differential expression in replicate datasets.

The type of statistical tools available to the user are dependent on the number of groups specified during the
Preparing Datasets process. If more complicated analyses are needed, you can download the raw CEL files
or the normalized data for analysis using the statistical package of your choice. See "Downloading a
Dataset".

Statistics for Differential Expression in TwoGroups

If you have grouped the arrays in your dataset into only two groups, you can perform parametric, non-par-
ametric, or 2-way ANOVA statistical analysis.

Parametric Analysis

The parametric analysis is a two-sample t-test assuming equal variances and is executed using the R func-
tion t.test. This test is considered parametric because it assumes that the distribution of expression values is
normal within each group. However, expression data is often not distributed normally and there are often not
enough observations to assume that the central limit theorem applies.
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Non-Parametric Analysis

A non-parametric test does not depend on the distribution of the expression data. TheWilcoxon rank sum test
is invoked when you specify a non-parametric test. This analysis is done in R using the functionwilcox_test
from the coin package. When the sample size is under 50, the exact p-value is used, otherwise a normal
approximation is calculated. The parametric t-test is more powerful when the data is truly normally distributed,
but the non-parametric test is robust for data that is not normally distributed.

Two-way ANOVA Analysis

Use a two-way ANOVA Analysis to input factors or use factors from the array attributes in a two-way analysis
of variance. You can test for four different effects; main effect of factor 1, main effect of factor 2, the inter-
action effect between factor 1 and factor 2, or the overall model effect. To test for the interaction effect or the
overall model effect, a regressionmodel is used that contains themain effects for both factor 1 and factor 2
plus the interaction effect, a true two-way ANOVA. To test for main effects, the interaction effect is not
included in themodel. F-statistics are reported in all cases. Factors that are entered as character values are
treated as categorical, and factors that are entered as numerical values are treated as continuous.

Statistics for Differential Expression with More than TwoGroups

If you have grouped the arrays in your dataset into more than two groups, the following types of statistical anal-
yses are available:

l One-way ANOVA
l Two-way ANOVA
l T-test with noise distribution

One-way ANOVA Analysis

Use a one-way ANOVA model to compare the within-group variance and the between-group variance of
selected groups. You can choose from any of the possible pair-wise contrasts (e.g., Group1 vs. Group 2) or
the overall effect of group (factor effect) on themodel. When there aremore than four groups, you can only use
the factor effect. For the pair-wise contrasts, a moderated t-statistic is used to test significance, and for factor
effects, a moderated F-statistic is used. For themoderated t-statistic and F-statistic, the standard deviation of
the ordinary test is "shrunk" to reflect information that is borrowed across genes (Smyth 2004).
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Two-way ANOVA Analysis

Use a two-way ANOVA Analysis to input factors or use factors from the array attributes in a two-way analysis
of variance. You can test for four different effects; main effect of factor 1, main effect of factor 2, the inter-
action effect between factor 1 and factor 2, or the overall model effect. To test for the interaction effect or the
overall model effect, a regressionmodel is used that contains themain effects for both factor 1 and factor 2
plus the interaction effect, a true two-way ANOVA. To test for main effects, the interaction effect is not
included in themodel. F-statistics are reported in all cases. Factors that are entered as character values are
treated as categorical, and factors that are entered as numerical values are treated as continuous.

T-Test with Noise Distribution Analysis

Use a t-test with noise distribution to determine a list of genes that are differentially expressed between two
groups in a replicate experiment, i.e., "high" selected line from replicate 1, "low" selected line from replicate 1,

80



"high" selected line from replicate 2, and "low" selected line from replicate 2. This method was first introduced
by Eaves et al. in 2002.

This method involves first calculating amodified t-statistic for each probe(set) for each replicate separately
where the traditional sample variances are replaced with a "pooled" variance. The pooled variance is cal-
culated for each group using a weightedmean between the observed variance and amean local variance. The
weights are 2 to 1 where the larger of the two variances is given the larger weight. To calculate themean local
variance, the data is first sorted by mean expression for each probe(set), themean local variance is then cal-
culated as themean of the variances of the 250 probe(set)s immediately below the probe(set) of interest and
the 250 probe(set)s immediately above the probe(set) of interest.

After t-statistics are calculated for each probe(set) and each replicate, the probe(set)s are separated into two
groups. Probe(set)s are placed in the null distribution if their t-statistics show opposite signs in the two rep-
licate experiments. The t-statistics for these experiments are used to generate a null distribution of t-statistics
for p-values to be based on. Instead of individual p-values being calculated for each probe(set), an initial p-
value threshold is set and it is determined whether or not probe(set)s meet this criteria. Using this method, the
type I error rate (p-value) is determined by the product of the following three probabilities:

1. Probability of a t-statistic greater than the one observed given the gene is not differentially expressed in
replicate dataset1 (i.e., in null distribution).

2. Probability of a t-statistic greater than the one observed given the gene is not differentially expressed in
replicate dataset2 (i.e., in null distribution).

3. Probability of having the two t-statistics showing the same direction of differential expression (i.e. 0.5).

Therefore, the percentiles from the null distribution used to determine 'significance' can be calculated for a spe-
cific error rate by taking the square root of the fraction, the probability of having the two t-statistics showing
the same direction of differential expression divided by the specified error rate. A gene is considered sig-
nificant if the observed t-statistic for each replicate is larger than the threshold t-statistic determined from the
null distribution for that replicate. Exact p-values are not reported for this statistical method, and therefore, mul-
tiple testing corrections cannot be implemented.

References

Eaves IA, Wicker LS, Ghandour G, Lyons PA, Peterson LB, Todd JA, Glynne RJ (2002). Combiningmouse
congenic strain andmicroarray gene expression analyses to study a complex trait: The NOD model of type1
diabetes. GenomeResearch 12:232-243.

Correlation Analysis

A correlation analysis is used to determine if two variables are associated with each other. The Correlation
Analysis tool on the PhenoGenwebsite searches for genes whose expression value correlates with a phe-
notype value. You can use the correlation analysis tools with one of your own experiments or with one of the
public datasets on the website (see "Public Datasets" on page 24 for details). You upload phenotype data
which can be any continuous measurement.

For example, if you are interested in genes expressed in the brain that are correlated with alcohol preference in
mice, you can upload a file containing alcohol preference values for any or all of the inbred or recombinant
inbred strains for which whole brain gene expression data is available on the PhenoGenwebsite see "Public
Datasets" on page 24 for details). A positive correlation between alcohol preference and the expression value
of a transcript in strains where the expression for that transcript is highmight indicate a relationship between
that gene and alcohol preference. Similarly, a negative correlationmight indicate an inverse relationship.

Statistics for Correlation Analysis

For correlation analysis, mean expression values are calculated within strain. Thesemean values are cor-
related with the strain phenotypic measures that you upload. You can choose either a Pearson Correlation
Coefficient or a Spearman Rank Correlation Coefficient to calculate correlation.
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Pearson Test

The Pearson correlation coefficient is a parametric test for a linear relationship between two variables. A par-
ametric test is more powerful when the two variables involved are truly normally distributed, but a non-par-
ametric test is more accurate when this normality assumption is not met.

Spearman Test

The Spearman rank correlation is a non-parametric test that looks at the correlation of the ranks of the values
rather than the actual values. A non-parametric test is necessary when the distribution of either of the var-
iables is not normal.

Multiple Testing Adjustment

There are eleven options for adjusting p-values for multiple testing. Multiple testing adjustments are only used
for statistical analysis when doing a differential expression or a correlation analysis. They are split into four cat-
egories:

l False Discovery Rate (FDR)
l General
l Permutation
l None

False Discovery Rate

1. Benjamini and Hochberg (BH)
2. Benjamini and Yekutieli (BY)
3. Storey

References

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to
multiple testing. JR Statist Soc B 57:289-300.

Benjamini Y and Yekutieli D (2001). The control of the false discovery rate in multiple hypothesis testing under
dependency. Annals of Statistics 29(4):1165-1188.

Storey JD (2002). A direct approach to false discovery rates. JR Statist Soc B 64:479-498.

General

4. Bonferroni
5. Holm
6. Hochberg
7. Sidak Single Step (SidakSS)
8. Sidak Step-Down (SidakSD)

References

Dudoit S, Shaffer JP, Boldrick JC (2002). Multiple hypothesis testing in microarray experiments. UC Berkeley
Division of Biostatistics Working Paper Series, paper 110. http://www.bepress.com/ucbbiostat/paper110

Permutation

9. minP with permutation (only available for two groups)
10. maxT with permutation (only available for two groups)

References
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Westfall PH and Young SS (1993). Resampling-basedmultiple testing: Examples andmethods for p-value
adjustment, JohnWiley & Sons.

None

11. No Test

All multiple testing adjustments are conducted in R. Adjustments 1, 2 and 4 through 8 are done using the R
functionmt.rawp2adjp. Adjustment 9 uses mt.maxT and adjustment 10 uses mt.minP. Adjustment 3 uses
qvalue.

For several methods, only the threshold value for α needs to be specified to complete the analysis. For Adjust-
ment 3, themethod for estimating the tuning parameter must be specified in addition to the alpha threshold.
You can use a "smoother" approach or a "bootstrap" approach. For most cases, the "smoother" approach
works better, but there are situations when it will fail. Therefore, "bootstrap" is overall a safer option.

With the twomethods of adjustment that require permutation (9 and 10), twomore parameters must be spec-
ified because these twomethods require that the statistical analysis be done for each permutation. The two
additional parameters are:

l The type of test to be conducted. The choice here overrides the results from the statistical analysis
specified previously.

l The number of permutations to use in estimating the p-value.

Note: The last method, 'No Test', provides the option of not using any of themultiple comparison adjust-
ments.

Clustering Analysis

The PhenoGenwebsite provides the ability to cluster gene expression values by samples, groups, probe sets,
or when using hierarchical clustering, by both samples or groups and probe sets. When you perform clustering
on a dataset, you have additional options for filtering the probes that are included in the analysis.

In addition to the filtering options available for other types of analysis, the following options are also available
for clustering:

l Variation
l Fold Change

See "Clustering Filtering Procedures" for details.

Statistics for Cluster Analysis

After you filter, youmust specify the clustering algorithm to use, the expression values to use, which object is
to be clustered, the distancemeasure to use, how many clusters you want to use, and which dissimilarity
measure to use (for hierarchical clustering).

l Clustering Algorithm - Choose whether to cluster using the hierarchical or k-means algorithm.
l Mean Expression Values - Choose whether to cluster using individual expression values for each

sample in your dataset or, if your dataset has more than two groups, to use themean expression
values for each group.

l Cluster Object - Choose whether to cluster samples, groups, or probes. When you choose hier-
archical clustering, you can also cluster by both samples or groups and probes to get a heat map rep-
resentation of the data.

l Dissimilarity Measure - Choose themethod for determining dissimilarity between clusters.
l Distance Measure - Both clustering algorithms are based on the distance that one cluster object is

from the other, in other words, the dissimilarity between objects. In the PhenoGenwebsite, distance
(dissimilarity) can be calculated using two different measures; Euclidean distance or oneminus the
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correlation. The Euclidean distance is the square root of the sum of squared differences. In general,
oneminus the correlation is more commonly used inmicroarray analyses because it is both location
and scale invariant.

Hierarchical Clustering Method

The hierarchical clusteringmethod on the PhenoGenwebsite uses bottom-upmethodology where each
cluster object starts off as its own cluster. Next, the two clusters that are themost similar are combined into
one cluster. This process is repeated until all clusters have been combined to form one cluster that contains
all cluster objects. When using hierarchical clustering, youmust choose a between-cluster dissimilarity meas-
ure.

Hierarchical clustering is implemented using the hclust function in R. You can also specify the number of
clusters to form. Generally in hierarchical clustering, the number of clusters does not need to be specified a
priori, but on the PhenoGenwebsite, when you specify the number of clusters to form, cluster objects can be
placed into groups, and if the cluster objects are probes, then these individual groups can be downloaded as
gene lists for further exploration and analysis. In addition to a numerical representation of the clusters, a den-
drogram is also created and displayed when a single cluster object is chosen. When you choose to cluster on
both samples (or groups) and probes, you do not have to specify the number of clusters, and the only output
generated is a heat map with samples or groups along the x axis and probes along the y axis. In the heat map,
the expression intensity values are represented as a z-score calculated using themean and standard devi-
ation for that particular probe. The z-score is represented on a color scale from bright red to bright green where
red indicates a larger negative z-score value, and green indicates a larger positive z-score. See "Viewing Heat
Maps" for details.

Dissimilarity Measure

The distance between clusters is calculated using the LanceWilliams dissimilarity update formula according
to themeasure you chose. There are four different options for the between-cluster dissimilarity measure:

l Single - Minimum difference between points in different clusters.
l Complete - Maximum difference between points in different clusters
l Average - Average of all distances between points in different clusters.
l Centroid - Difference between cluster centroids.

K-Means Partitioning Method

The other clustering algorithm, the k-means partitioningmethod, iteratively updates the cluster centers until
the sum of squared distances from each observation to its cluster center is minimized. The Hartigan and
Wongmethod as implemented in the function kmeans in R is used for the k-means analysis. This algorithm
requires that initial estimates of cluster centers be given. Currently, cluster objects are chosen at random to
use as starting locations. Since different starting locations might generate different results, you should be
aware that if the same analysis is carried out again on the website, the results may differ.
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Filtering and Analyzing Datasets
1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.
3. Click the dataset you want to analyze.

Note:Datasets that are ready for analysis have a checkmark in theQC Complete and theArrays
Grouped and Normalized columns.

4. Click the Normalized version you want to analyze. Click View in theDetails column to view the param-
eters used for normalizing the version.
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5. Choose a type of analysis:
l "Differential Expression Analysis" on page 79 - Proceed to step 7.
l "Correlation Analysis" on page 81 - Proceed to step 6.
l "Clustering Analysis" on page 83 - Proceed to step 7.

6. Do one of the following:
1. Click theCreate New Phenotype link at the top right, and choose an option:

l Upload Phenotype Data -Allows you to upload a phenotype data file.
l Enter New Phenotype Data - Allows you to enter new phenotype data.
l Copy Existing Phenotype Data - Allows you to copy and edit existing phenotype data. If

phenotype data does not exist for the version, this option is not available.

Note: See "Using Phenotype Data in Correlation Analysis" for upload, enter, copy, and
delete instructions, then proceed to step 7.

OR

2. Choose a phenotype from thePhenotype Values table, then proceed to step 7.
7. Choose a gene filteringmethod.

Filtering Affymetrix Arrays

If your experiment contains Affymetrix arrays, choose:
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l Affy Control Genes - Proceed to step 8.
l MAS5 Absolute Call Filter - Specify whether toKeep orRemove probes and the values for

groups, then proceed to step 8.
l Heritability Filter - Specify the panel to use, enter theMinimum Heritability Criteria, then

proceed to step 8.
l ebQTL/eQTL - Choose aQTL list, then proceed to step 8.
l Gene List Filter - Specify whether toKeep orRemove probes for a selected gene list. This is a

good option when you want to review results from a previous analysis. Proceed to step 8.

Filtering CodeLink Arrays

If your experiment contains CodeLink arrays, choose:

l CodeLink Control Genes Filter - Proceed to step 8.
l CodeLink Call Filter - Specify whether toKeep orRemove probes and the values for groups,

then proceed to step 8.
l GeneSpring Call Filter - Specify whether toKeep orRemove probes and the values for

groups, then proceed to step 8.
l Median Filter - Specify the Filter threshold, then proceed to step 8.
l Coefficient Variation Filter - Specify and or or and the values for groups, then proceed to step

8.
l Negative Control Filter - Specify whether toKeep orRemove probes and the values for

groups, specify the Trim percentage, then proceed to step 8.
l Heritability Filter - Specify theMinimum Heritability Criteria then proceed to step 8.
l bQTL/eQTL - Choose aQTL list, then proceed to step 8.
l Gene List Filter - Specify whether toKeep orRemove probes for a selected gene list. This is a

good option when you want to review results from a previous analysis. Proceed to step 8.

Additional Options for Cluster Analysis

If you are doing a cluster analysis, the following additional options are available:

l Variation Filter - Specify how many probes to retain by either entering a percent or an exact
number, then proceed to step 8.

l Fold Change Filter - Specify how many probes to retain by either entering a percent or an
exact number, then proceed to step 8.

8. Click Run Filter to run the filter. After the filter runs, you can choose another filter to refine your filtering
criteria, and click Run Filter again.

9. Click Next to proceed to statistical analysis or clustering when you are satisfied with the number of
probes remaining.

10. Select the type of statistics test you want to run:

Differential Expression

l Parametric or non-parametric
l 1-Way ANOVA, then select the 1-Way ANOVA Parameter.
l 2-Way ANOVA, then select the P-value of Interest and choose the 2-Way ANOVA Factors.

Correlation Analysis

l Pearson or Spearman
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Clustering

l Hierarchical, then select the use groupmeans or individual sample values, the distancemeas-
ure, the cluster object, the between cluster dissimilarity measure, and the number of clusters to
report.

l K-means Partitioning, then select the use groupmeans or individual sample values, the dis-
tancemeasure, the cluster object, and the number of clusters to report.

11. Click Run Test. You can run statistics multiple times with different options until you are satisfied with
the results. Proceed to Step 12 for Differential Expression or Correlation. Proceed to Step 16 for Clus-
tering Analysis.

12. Click Next to correct forMultiple Testing, if applicable. See "Multiple Testing Adjustment" for infor-
mation about each selection in the drop-down list.

13. Based on your selection in step 12, youmay need to:
l Enter an alpha level threshold.
l Select an alpha or multiple correction threshold from a drop-down list.
l Enter an alpha level threshold, select the type of test for permutation, and select the

number of permutations.
l Enter the clustering parameters.

Note:You can only cluster on probes if you have less than 5000 probes available.
14. Click Run Adjustment. You can run adjustments multiple times with different parameters until you are

satisfied with the results.
15. Click Next.

Differential and Correlation Analysis

If the number of statistically significant genes is greater than zero (0) for a differential expression or correlation
analysis, you can save the gene list.

16. Enter a name for the gene list.
17. Enter a description for the gene list.
18. OPTIONAL: Click theSet description to the parameters used checkbox to automatically populate

the description field with the filtering and statistical analysis parameters you used.
19. Click Save Gene List. The gene list is saved, and a confirmationmessage displays. Click Close.

Clustering Analysis

When you perform a cluster analysis, the results display in a table below theAnalysis Parameters table. You
can review and save them. See "Saving Cluster Analysis Results" for details.

16. Click theView Dendrogram link beside theCluster Results title to see the dendrogram.
17. Click Save Results to save the cluster results as a gene list. A confirmationmessage displays. Click

Close.
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Using Phenotype Data in Correlation Analysis
If you chooseCorrelation Analysis when you filter and analyze datasets, a page where you can run correlation
analysis displays.

You can

l Click Create New Phenotype at the top right. You have the option of:
o "Uploading Phenotype Data" on page 90.
o "Entering Phenotype Data" on page 91.
o "Copying Phenotype Data" on page 92.

l Click theDelete icon beside the phenotype values you want to delete.
l Click View to see a listing and graph of the phenotype values.

You can also re-normalize a public dataset during the Correlation Analysis. See "Re-normalizing a Public Data-
set".

See "Filtering and Analyzing Datasets" for instructions to open thePhenotypes page.
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Uploading Phenotype Data

Upload phenotype data from a file. The required format for a phenotype data file is a 2-column, tab-delimited
text file with no column headers. The first column should contain the strain name, and the second column
should contain the phenotype value for that strain. The strain names should exactly match the strain names in
your dataset.

1. Click Create New Phenotype at the top right.
2. Enter a name for the phenotype.
3. Enter a description of the phenotype.
4. Select theUpload Phenotype Data File option button.
5. Click Browse to select the file that contains the phenotype data.
6. Click Save Values. A Success page displays with the number of matching strains uploaded.

Note: The strain names in your phenotype data file must match the strain names in the selected dataset
exactly.
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Entering Phenotype Data

1. Click Create New Phenotype at the top right.
2. Enter a name for the phenotype.
3. Enter a description of the phenotype.
4. Select theEnter New Phenotype Data option button.
5. Enter values for each group in the list.
6. Click Save Values. A Success page displays.
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Copying Phenotype Data

Copy, edit, and save phenotype data. This option is only available if Phenotype Values exist.

1. Click Create New Phenotype at the top right.
2. Enter a name for the phenotype.
3. Enter a description of the phenotype.

4. Select theCopy Existing Phenotype Data option button.
5. Choose an existing phenotype from theCopy values from drop-down list.
6. Enter or modify values for each group in the list.
7. Click Save Values. A Success page displays.
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Re-normalizing a Public Dataset

When you run a correlation analysis on a dataset, youmay have the option to re-normalize it, using only the
strains for which you have entered phenotype data.

1. Choose a phenotype from thePhenotype Values table.

2. Click Create New Phenotype at the top right.
3. Enter a name for the phenotype.
4. Enter a description of the phenotype.
5. Select theEnter New Phenotype Data option button.
6. Enter values for the groups in the list.
7. Click Save Values. If you do not enter a value for each group in the list, a pop-up displays to ask if you

want to re-normalize.
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Saving Cluster Analysis Results
After you complete Cluster Analysis, you can save your results to view later.

1. Perform a cluster analysis. See "Filtering and Analyzing Datasets" for details.
2. Click Save Resultswhen the analysis is complete.

3. Click Next to view your results now. See "Viewing Cluster Analysis Results" for instructions on view-
ing your results later.
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Viewing Cluster Analysis Results
You can view Cluster Analysis results for all the clustering analyses that you save. See "Saving Cluster Anal-
ysis Results".

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.
3. Click the dataset for which you want to see cluster results.
4. Click the version that contains the cluster results.
5. Click theMagnify icon in the Cluster column. The cluster results display.

You can:

l Click aCluster Description to view the results of that cluster analysis.

l Click theDelete icon beside the cluster results you want to delete.
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Cluster Results

TheCluster Results page for the specific dataset displays the parameters used in the cluster analysis.
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Viewing Dendrograms

A dendrogram provides a visual of the similarity between cluster objects. Along the horizontal axis, all cluster
objects are listed. The cluster objects are "joined" at different levels until all cluster objects have been joined
together into one group. The similarity between cluster objects or groups of cluster objects is related to the
height at which they are joined. Cluster objects or groups of cluster objects that are joined at a lower height are
more similar than cluster objects or groups of cluster objects that are joined at larger heights. The red boxes in
the dendrogram indicate the groups of cluster objects that are defined at a specific height.

Depending on the type of cluster analysis, a dendrogram of the results may be available. If so, aView Den-
drogram link displays.
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Viewing Heat Maps

A heat map displays results when both probes and samples are clustered. It provides a visual representation
of expression levels across all samples and all probes. Probes are represented along the vertical axis and
samples are represented along the horizontal axis. The order of the probes and the samples depend on hier-
archical clustering of the individual dendrograms along the left side and the top of the heat map. The expres-
sion intensity values are converted to a z-score that is calculated using themean and standard deviation for
that particular probe(set). The z-score is represented on a color scale from bright red to bright green where red
indicates a larger negative z-score value and green indicated a larger positive z-score.

Depending on the type of cluster analysis, a heat map of the results may be available. If so, aView Heat Map
link displays.
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Viewing K-Means Graphs

When k-means partitioning is used, a graph is generated for each cluster. The graph has the non-cluster
objects (i.e., if the cluster objects are probes then the non-cluster objects are samples) along the horizontal
axis and gene expression is represented on the vertical axis. Each cluster object within a particular cluster is
represented by a different color of line in the graph.

Depending on the type of cluster analysis, a k-means graphmay be available. If so, aView Graph link dis-
plays.

Downloading a Dataset
You can download raw data files and normalized versions of a dataset.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.
3. Click theDownload icon beside the dataset you want to download. The normalized data files, phe-

notype data files, and raw data files for each version of the dataset display.

Note: If there are no normalized data files, only raw data files display.

4. Click the checkbox(es) next to the data files you want to download. Click the checkbox at the top of a
column to select or deselect all.
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5. Click Download.
6. Choose to open or save the files, and follow the instructions that display. These instructions vary

depending on your Internet browser (e.g., Internet Explorer, Firefox, Safari, etc.). If files are large, an
email that contains a link for downloading the prepared files is sent to you when they are ready to down-
load.

Deleting Datasets and Versions

Deleting a Dataset

You can delete a dataset and all of its versions, if necessary.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.
3. Click theDelete icon beside the dataset you want to delete.
4. Click theDelete button. A confirmationmessage displays. Click Close.

Deleting a Version

You can delete a version, if necessary.

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click Analyze precompiled datasets. A page displays your datasets.
3. Click a dataset that has been normalized.
4. Click theDelete icon beside the version you want to delete.
5. Click Delete. A confirmationmessage displays. Click Close.
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Viewing Gene Expression Data
TheView Gene Expression page allows you to obtain gene expression intensity values for a gene or gene list
from a normalized dataset, or specify a pre-created gene list. The results table displays group-level infor-
mation for each gene, such as groupmeans and group standard error.

You can view gene expression data from themainmenu in two ways: viaMicroarray Analysis Tools or via
Gene List Analysis Tools:

Microarray Analysis Tools

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click View expression values for a list of genes in a dataset. TheExpression Values page dis-

plays.

Gene List Analysis Tools

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view gene expression data.
4. Click theExpression Values tab. TheExpression Values page displays.
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On the Expression Values page:

The options on the Expression Values page are the same, regardless of how you navigated to the page.

1. OPTIONAL: Click theView link in theDetails column to view dataset details such as name, descrip-
tion, organism, arrays in dataset, andmore. See "Viewing Dataset Details" for more information.

2. Click the dataset for which you want to see gene expression data. A page displays the normalized ver-
sions of that dataset.

3. Click the normalized version for which you want to see gene expression data. A page displays gene
lists for that version.

4. Click the gene list for which you want to see gene expression data. TheView Gene Expression page
displays.
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5. You can:
l Click theArray Values link to view the individual array values.
l Click theGroup Means link to view the groupmean values (this is the default view).
l Click Download to save the groupmeans as well as the individual array values. Follow the

instructions that display as you open or save the files. These instructions vary depending on
your Internet browser (e.g., Internet Explorer, Firefox, Safari).
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Analyzing Gene Lists
Gene Analysis Tools allow you to:

l Analyze a gene list.See "Viewing Gene Lists" for details.
l Upload your own data or type in a new gene list. See "Creating aGene List Overview" for details.
l Derive a list of genes from amicroarray analysis. See "Analyzing Datasets" for details.

Using the above options, you can also delete gene lists and access tools for interpreting them.

Gene list data security requirements depend on the origin of the gene lists. The owner of a gene list can give
other users permission to see gene lists that they own. If you have permission to view a gene list, because
you own it or otherwise, you can also download that gene list.

Viewing Gene Lists
You can view and work with gene lists.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.

Note:You can only view gene lists that you have created or to which you have been granted
access. See "Sharing aGene List".

You can:

l Click theCreate New Gene List button to upload or manually create a new gene list.
l Click theView link in theDetails column to view gene list details. See "Viewing Gene List Details" for

more information.
l Click on a row to view the gene list.

l Click theDelete icon to delete a gene list.

l Click theDownload icon to download a gene list.
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When you click a gene list, the following tabs display details for that gene list:

l List:Shows the list of genes in the selected gene list.
l Annotation:Allows you to perform annotation on a gene list.
l Location (eQTL):Allows you to view the physical location and transcriptional control locations (eQTL)

of your genes on an interactive chromosomemap.
l Literature:Allows you to perform a literature search for a gene list
l Promoter: Allows you to run promoter analysis using oPOSSUM, MEME or Upstream Sequence

Extraction on a gene list.
l Homologs:Allows you to obtain information regarding chromosomal location in other genomes.
l Pathways:Allows you to analyze the hypothetical impact of differences in transcription levels of a set

of genes on signaling pathways defined by KEGG (Ogata et al 1999). The Pathways tab only displays
when a full change or correlation coefficient is available.

l Analysis Statistics: - Allows you to view the raw p-values and the adjusted p-values from the sta-
tistical analysis performed to generate this gene list. Depending on the number of groups and the type
of analysis used, it may also display groupmeans, F-statistic, mean intensity, correlation coefficient,
difference in log base 2 intensity, t-statistic, or parameter estimates. The Analysis Statistics tab only
displays if the gene list was created by running an experiment; it contains the statistics related to that
analysis.

l Expression Values:Allows you to view normalized expression values of your genes in any data set.
l Exon Correlations:Allows you to an create an exon correlation heatmap for a specific gene, species,

and tissue.
l Save As:Allows you to save gene lists translated to other types of identifiers.
l Compare:Allows you to compare gene lists, with the option to create, for example, unions or inter-

sections of the gene identifiers.
l Share:Allows you to view users who have access to a gene list and to give permission to other users

to access your gene list.
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Viewing Gene List Details
1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click theView link in theDetails column beside a gene list to view the details. You can also view the

gene list details when you click themagnifying glass that displays after you select the gene list.

The resultingGene List Details page provides basic information about a gene list such as name, description,
organism, date created, and source. It also shows the filters, normalization parameters, and statistical anal-
ysis that were used to create the gene list.

Creating a Gene List Overview
You can create a gene list from:

l A differential expression analysis of a dataset.
l A correlation analysis of a dataset.
l A cluster analysis of a dataset.

You can alsomanually enter, copy, or upload gene lists. See:
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l "Manually Entering aGene List" on page 109
l "Uploading aGene List" on page 143
l "Copying aGene List" on page 111
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Uploading a Gene List
You can upload an existing gene list to the PhenoGenwebsite for analysis. Your gene list must be a text file
andmust contain only one gene identifier per line or it will not upload correctly. When you upload gene list
data, you can give other users permission to see the gene list.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Upload or create a new list of genes to use for an analysis. TheCreate a New Gene List

page displays.

3. Enter theGene List Name.
4. Select theOrganism from the drop-down list.
5. Enter theGene List Description.
6. Make sureUpload Gene List File is selected.
7. Click Browse, and follow the instructions to select the gene list you want to upload.
8. Click Create Gene List. The new gene list is created.
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Manually Entering a Gene List
1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Upload or create a new list of genes to use for an analysis. TheCreate a New Gene List

page displays.

3. Enter theGene List Name.
4. Select theOrganism from the drop-down list.
5. Enter theGene List Description.
6. Make sureEnter Gene Identifiers is selected.
7. Type in the genes to include in the gene list. Youmust separate the genes with a space or by pressing

Enter on the keyboard, or they cannot be processed correctly. Genes can be entered in the following
formats:

Gene IDs Example Description
Affymetrix 3' ID 1416283_at

Affymetrix Exon Probe
set ID

420693

Affymetrix Exon Tran-
script ID

781497

CodeLink ID NM_009775_Probe1

GE34729
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Ensembl ID ENS-
MUSG00000022962

Begins with ENS, followed by the
three-letter organism, followed by G,
followed by a number.

Entrez Gene ID 14450 Contains three or more numbers.

FlyBase Gene ID FBgn0013277 All IDs are preceded by FBgn and
have numbers following.

Gene Symbols Grin1 Official gene symbols.

MGI ID MGI:95654

NCBI/EMBL RNA
accession number

AK146355 Begins with one or two letters, fol-
lowed by multiple numbers.

RefSeq RNA acces-
sion number

NM_010256 Begins with two capital letters, fol-
lowed by an underscore, followed by
numbers.

RGD ID 2203 Contains four or more numbers.

UniGene ID Mm.4505 Contains an organism prefix (Dm,
Hs, Rn, or Mm), followed by a
period, followed by numbers.

Genes not entered in the formats abovemay not be recognized by the PhenoGenwebsite.

8. Click Create Gene Listwhen you are done. Your gene list displays on theResearch Genes page.
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Copying a Gene List
1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Upload or create a new list of genes to use for an analysis. TheCreate a New Gene List

page displays.

3. Enter theGene List Name.
4. Select theOrganism from the drop-down list.
5. Enter theGene List Description.
6. Make sureCopy Existing Gene List is selected.
7. Select a gene list from the drop-down list. The gene list populates the box.
8. Type in new genes and delete existing genes as necessary.
9. Click Create Gene List. The new gene list is created.
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Annotating Gene Lists
Gene lists on the PhenoGenwebsite can contain identifiers from any source and can be translated using a tool
called iDecoder. This tool translates identifiers to and from the following identifier types:

l AFFYMETRIX 3' PROBESET ID
l AFFYMETRIX EXON PROBESET ID
l AFFYMETRIX EXON TRANSCRIPT ID
l CODELINK PROBE ID
l ENSEMBL ID
l ENTREZ GENE ID
l FLYBASE ID
l GENE SYMBOL
l MGI ID
l REFSEQPROTEIN ID
l REFSEQGENE ID
l RGD ID
l SWISSPROT ID
l UNIGENE ID

The data used to translate these values comes from information downloaded from the following organizations:

l Affymetrix
l CodeLink (GE Healthcare)
l Ensembl
l FlyBase
l MGI
l NCBI
l RGD
l Swissprot

Your uploaded gene lists can be amixture of many ID types, but all identifiers in a gene list must be for the
same organism. For example, you can upload a gene list that contains an Affymetrix probe set ID, an official
gene symbol, an Entrez Gene ID, and a RefSeqGene ID, and iDecoder translates them into the identifier
types appropriate for the selected tool.

iDecoder is the underlying program for the annotation tools on the PhenoGenwebsite that maps gene iden-
tifiers between databases and . For instance, if database 1 contains entry A and database 2 contains entry B,
and both A and B refer to entry C in database 3, but not to each other, iDecoder identifies that A and B are
related. Themethod is very efficient in unearthing previously unknown equivalent IDs.

There are two levels of annotation available on the PhenoGenwebsite:

l "Basic Annotation" on page 112
l "More Annotation" on page 113

Basic Annotation
Basic annotation displays links to themost popular databases for each of the identifiers in a gene list. In addi-
tion to general annotation, the Basic Annotation tool also provides information on expression QTL (eQTL),
based onmouse or rat data. A QTL column displays in the Basic Annotation table and aPhenoGen eQTL link
displays when the gene list entry matches either a probe ID or gene symbol in the eQTL data.
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Expression QTL (eQTL)

The purpose of expression QTLs is to determine the location in the genome that controls the transcription level
of a gene. eQTLs are calculated using traditional QTL techniques where the quantitative trait of interest is the
expression level of a gene as measured by microarray analysis. On the PhenoGenwebsite, eQTLs have been
calculated for bothmouse and rat data. When you run Basic Annotation on gene lists for either of these spe-
cies, the eQTLs are reported. See "Expression QTLDerivation".

In the expression QTL table, the physical location of the probe set ID is shown, along with the location of the
marker that represents themaximum LOD score for that transcript. The location of themarker with themax-
imum LOD score indicates the region of transcriptional control. For this analysis, if the physical location of a
gene is near the location of transcriptional control, the gene is considered to be cis (locally)-regulated. Other-
wise, the gene is considered trans (distally)-regulated. The physical location of probe(set)s were obtained
using the BLAT software (http://www.kentinformatics.com) andmapping on the NCBI m37mouse genome
assembly and the RGSCv3.4 genome assembly obtained from the UCSC Genome Browser (http:/-
/genome.ucsc.edu).

Allen Brain Atlas

You can obtain the regional expression pattern of a given gene in the brain of a C57BL/6J mouse by clicking
on the link provided in theAllen Brain Atlas column in the Basic Annotation table. These links are available
ONLY for mouse gene lists. The Allen Brain Atlas (Lein et al., 2007) is an open-access database of gene
expression in the C57BL/6J brain tissue. This database was created by the Allen Institute for Brain Science
(Seattle, Washington) and contains data for genome-wide RNA expression obtained using high-throughput, in
situ hybridization. In addition to the expression data, the Atlas also has a number of tools available for analyz-
ing and visualizing the in situ images. Click the Instructions link, at the top of the Allen Brain Atlas column, to
see basic instructions for viewing images on the Allen Brain Atlas. Comprehensive help documentation is
available online at: http://www.brain-map.org.
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More Annotation
More annotation options allow you to select a customized set of databases for the annotation of a given gene
list. After you select a gene list, you can perform annotation and select one or more of the different databases
to obtain further annotation. You can download this information. See "UsingMore Annotation Options" for
details.

Performing Annotation
1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to perform annotation.
4. Click theAnnotation tab. TheAnnotation page displays and lists the equivalent ID from five different

ID types:
l Official Symbol
l RefSeq
l MGI (MouseGenome Informatics), RGD (Rat GenomeDatabase), or Fly Base

113

http://www.kentinformatics.com/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://www.brain-map.org/
http://www.brain-map.org/


l UniProt (Swiss Prot)
l UC Santa Cruz (University of California, Santa Cruz)

It also lists:

l Genetically Modified Animal Available
l QTLs
l Genetic Variations
l Allen Brain Atlas (if applicable)

You can:

l Click theDownload icon to download annotation information for the gene list.
l Click any link in a cell to open the website or information page for the ID you selected. If there

aremultiple links in a cell, each link opens a related page.

The Accession IDs display on the left, and the equivalent IDs for these genes from six specified resources are
returned; Official gene symbol, NCBI's RefSeq, Jackson Laboratory's MouseGenome Informatics (MGI),
SwissProt's UniProt, University of California Santa Cruz, and Ensembl's TranscriptSNPView. These cor-
responding IDs are linked to their respective databases. When you click a link, further annotation is displayed
in a new window. In addition to these links, if there are any genetically modifiedmice available for a particular
gene, information from the database of genetically modifiedmice (maintained by MGI) is provided. Similarly, a
link to PhenoGen eQTL data for a particular gene is also provided, if available. For mouse gene lists, a link to
the Allen Brain Atlas may also be displayed for a specific gene. You can download the Basic Annotation infor-
mation.

Using More Annotation Options
More annotation options allow you to select the gene list you want to annotate, then select the links you want
iDecoder to search for.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to perform more annotation.
4. Click theAnnotation tab.
5. Click More Annotation.
6. Select one or more target database links and array name(s), if desired.
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7. Click Download to download the selected database(s) .
8. Click Run to view annotation results, including the Gene ID, the database(s) searched, and the links

found in each database for your selections.

9. Click any of the different links to open the website for the link you selected.
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Viewing Location and eQTL
The location graphic allows you to investigate and use expression QTL (eQTL) datasets. By default, only the
physical locations are shown on the graphic. You can click the "Show locations of transcription control in
brain" check box to display the locations of transcription control. These green arrows represent the genomic
position(s) that control transcription of the candidate genes in the gene list (expression QTLs, or eQTLs).You
can also change the significance level for displaying eQTLs

You can view the location and eQTL data for a gene list in two ways:

Gene List Analysis Tools

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view location and eQTL.
4. Click the Location (eQTL) tab. The Location page displays.

QTL Tools:

1. ChooseQTL Tools in themainmenu.
2. Click View physical location and eQTL information about specific genes from a gene list. A

page displays the gene lists to which you have access.
3. Click the gene list for which you want to view location and eQTL. The Location and eQTL page dis-

plays.

The data on the page looks the same, regardless of the way you access the page. You can:
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l Click theView in table form link to see a table of all of the genes currently displayed on the graphic. If
any of the probe sets for a given gene have a significant eQTL, all of the probe sets for that gene are dis-
played in the table, but only themost significant eQTL position ("Max LOD") and the associatedmarker
locations are shown on the graphic.

o Click theView link in the gene table to display individual LOD plots for each probe set. Copy
these by right-clicking on the image.

o Click theDownload button to download the table into a tab-delimited text file.
o Click theCustomize this view button to change the default view of the table, which includes

all probe sets for a given gene.
l ChooseGenes (and all associated probesets) from the [selected] list that meet the

restriction criteria to restrict the list to those with eQTLs (probe sets) that overlap the
selected bQTL intervals.

l Select Probesets that are in the [selected] gene list to restrict the list to probe sets
(as opposed to genes) whose expression values are significantly correlated with the phe-
notype. These probe sets are also identified by the asterisk in the first column of the
table.

l Selelct Probesets that have eQTL p-value < [selected value] to restrict the list to only
the probe sets passing the desired threshold.

l ChooseGenes (and all associated probesets) from the [selected] list with probe-
sets that did not meet the restriction criteria or were not considered in eQTL to
restrict the list to those that were not considered in eQTL.

l Click theDownload icon to download the chromosomemap as a JPEG graphic.
l Click theSave displayed genes link to save the displayed genes as a gene list.

l Click theMagnify icon in the graphic to expand the graphic to the full page.
l Click a chromosome in the graphic to show an expanded view. See "Expanded Chromosomal View".
l Set theGeneGraphic Settings:

o Show physical location of genes - Choose this option tomark the physical location of genes
with a red arrow.

o Show genomic locations of transcription control in...Choose this option tomark the tran-
scription control locations with a green arrow, and choose a corresponding eQTL p-value. For
mouse, only brain is available. For rat, options are brain, heart, liver, and brown adipose.

l Click Advanced Settings to enter user-defined regions, such as QTLs. You can also:
o Click View to see details about the specific region.
o Click theDelete icon beside the region you want to delete.
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Expanded Chromosomal View
The expanded chromosomal view zooms in on the specific location you choose in the graphic, shows the
zoom location, and allows you to set basepair start (left) and end (right) positions.

Literature Search Overview
The Literature Search option is an automated literature search that you can tailor to your area(s) of interest by
selecting a set of query terms. Query terms can be further organized into categories. The automated literature
search tool searches abstract text and article titles that contain the gene ID, plus one or more of the query
terms. The results of the search are organized by the user-defined categories and by gene ID or name. The
return page provides the title, abstract, and PubMed link for each of the documents. The gene identifiers and
keywords from the search are also highlighted to help you sort, read, and work through what is likely to be a
large amount of text.
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Co-reference Analysis
An additional feature of the literature search on the PhenoGenwebsite is that publications are flagged if more
than one of the genes within the gene list arementioned in a single article. This allows you to easily identify
genes that have previously shown a documented relationship.

Performing a Literature Search
The Literature Search on the PhenoGenwebsite allows you to perform a Literature Search for a gene list as
well as the co-references for each gene in the list.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to perform a literature search
4. Click the Literature tab. The Literature page displays.

You can:

l Click theDelete icon to delete a literature search.
l Click a literature search to view the results of the selected literature search. See "View-

ing Literature Search Results".
l Click Run a New Literature Search to begin a new search.

Creating a Literature Search

1. Click Run a New Literature Search on the Literature tab to begin a new search.
2. Select a value from the drop-down list in theCategories field. The category field provides you with a

way to categorize your keywords.

Note: The Category name is NOT used in the search, but is a required field. ONLY values in the
keyword fields are used in the search.

2. Enter a keyword or keywords for the category you selected.
3. OPTIONAL:Click Clear Fields to clear all the categories and keywords fields.
4. Enter a Literature Search Name.
5. Click Submit Literature Search. The Literature Search uses iDecoder to determine the synonyms for

all genes in the gene list that is searched. The search looks at PubMed articles for all synonyms and
keywords that were entered in the search page.

Literature searches take time. When your results are available for viewing, an email is sent to the
address you provided in theRegistration page.
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Viewing Literature Search Results
You can view literature search results for all literature searches you have performed. The results provide links
to PubMed articles, organized by category. Links are also provided to articles wheremore than one gene is ref-
erenced in the same article. The PubMed results contain titles and the associated abstracts that are found for
the search terms.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to see literature search results.
4. Click the Literature tab. The Literature page displays.
5. Click a literature search to view the results of the selected literature search.

The Literature Results page shows the categories and keywords entered. It also displays the results sum-
mary and a list of coreferenced genes below the results summary. Note that gene names and keywords are
highlighted when displaying the abstracts retrieved from a literature search. On the Literature Results page:

l Click any of the available links to see the PubMed results by gene, category, or gene/category com-
bination.

l Click More to display the synonyms for a gene that were also listed in the search.
l Click theDownload icon to download the results.

Promoter Analysis and Extraction
The PhenoGenwebsite allows you to perform oPOSSUM andMEME promoter analysis, and upstream
sequence extraction.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to perform a promoter analysis.
4. Click thePromoter tab. ThePromoter page displays.
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oPOSSUM Overview
is a tool for determining the over-representation of transcription factor binding sites (TFBS) within a set of (co-
expressed) genes as compared with a pre-compiled (Ho Sui et al., 2005, Nucleic Acids Res 33(10):3154-64).
The input is a set of gene identifiers and analysis . The system compares the number of hits for each selected
TFBS on the target gene set against the background set. Two different measures of statistical significance
are applied to determine which TFBS sites are over-represented in the target set. The of the analysis are dis-
played in a tabular form.

Notes:
l The PhenoGenwebsite uses a customized version of oPOSSUM featuring a sub-set of input param-

eters.
l All matrices in the oPOSSUM database with a givenminimum specificity are selected. Thesematrices

are obtained from the JASPAR database.

Selection Criteria

Search Regional Level

This refers to the size of the region around the transcription start site (TSS) which was analyzed for TFBS
sites. The background set was computed using a region extending amaximum of 5000 bp upstream and 5000
bp downstream of the TSS. During the background computation the upstream region was truncated to less
than 5000 bp if it overlapped an upstream exon from another gene.

Conservation Level

To limit spurious TFBS sites, conservation with the aligned orthologous mouse sequence was used as a filter,
and only sites which fell within these non-coding conserved regions were kept. A conserved region was
defined as a span of someminimum length L within the human sequence which had a percent identity with the
alignedmouse sequence of someminimum value X. The background set was pre-computed with three levels
of conservation filter. Level 1 corresponds to the top 10 percentile of non-coding conserved regions with an
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absolute minimum percent identity of 70%. Level 2 corresponds to the top 20 percentile with aminimum per-
cent identity of 65% and level 3 corresponds to the top 30 percentile with aminimum percent identity of 60%.

Matrix Match Threshold

TFBS sites are scanned by sliding the corresponding position weight matrix (PWM) along the sequence and
scoring it at each position. The threshold is theminimum relative score used to report the position as a puta-
tive binding site. The background set was computed using a threshold of 70%.

Statistical measure for over-representation

Twomeasures of statistical over-representation are available: a one-tailed Fisher exact probability and a Z-
score.

One-tailed Fisher Exact Probability

The one-tailed Fisher exact probability compares the proportion of co-expressed genes containing a particular
TFBS to the proportion of the background set that contains the site to determine the probability of a non-ran-
dom association between the co-expressed gene set and the TFBS of interest. It is calculated using the hyper-
geometric probability distribution that describes sampling without replacement from a finite population
consisting of two types of elements. Therefore, the number of times a TFBS occurs in the promoter of an
individual gene is disregarded, and instead, the TFBS is considered as either present or absent.

Z-score

The Z-score uses a simple binomial distributionmodel to compare the rate of occurrence of a TFBS in the tar-
get set of genes to the expected rate estimated from the pre-computed background set.

For a given TFBS, let the random variable x denote the number of predicted binding site nucleotides in the con-
served non-coding regions of the target gene set. Let B be the number of predicted binding site nucleotides in
the conserved non-coding regions of the background gene set. Using a binomial model with n events, where n
is the total number of nucleotides examined (i.e., the total number of nucleotides in the conserved non-coding
regions) from the co-expressed genes, and N is the total number of nucleotides examined from the back-
ground genes, then the expected value of x is u = B * C, where C = n / N (i.e., C is the ratio of sample sizes).
Then taking p = B / N as the probability of success, the standard deviation is given by s = sqrt(n * p * (1 - p)).

Let x be the observed number of binding site nucleotides in the conserved non-coding regions of the co-
expressed genes. By applying the Central Limit Theorem and using the normal approximation to the binomial
distribution with a continuity correction, the z-score is calculated as z = (x - u - 0.5) / s. Then, the probability of
observing x or more binding site nucleotides in the conserved non-coding regions of the target genes, given
the TFBS is not truly over-represented in the target genes, is the p-value associated withPr(Z >= z).

MEME Overview
TheMEME (Multiple EM for Motif Extraction) search is based on occurrences of knownmotifs (transcription
factor binding sites). There aremany software options available to explore the occurrence of previously
uncharacterizedmotifs. Although these have not been directly incorporated within the PhenoGenwebsite as
with oPOSSUM, they can easily be applied using other publicly available web servers.

A recent comprehensive review (Tompa et al., 2005, Nature Biotechnology 23:137) of such programs found
that MEME (Bailey and Elkan, 1995, Proc. Int Conf Intell Syst Mol Biol 3:21), was one of the best performing
algorithms onmouse data. Methods likeMEME are optimal for analyzing sequences less than 2KB and it is
not recommended to use longer lengths for such tools. Furthermore, many motif software webservers restrict
the input data size. In addition to accessingMEME on the PhenoGenwebsite, MEME can also be accessed
at http://meme.sdsc.edu/meme/meme.html.
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Upstream Sequence Extraction Overview
An important step in understanding themechanisms that regulate the expression of genes is the ability to iden-
tify regulatory elements, i.e., the binding sites in DNA for transcription factors. Transcription factors are DNA
binding proteins, typically upstream from, and close to, the transcription start site (TSS) of a gene, that mod-
ulate the expression of the gene by activating or repressing the transcriptionmachinery.

Because there is a limited amount of information regarding themajority of the transcription factors and espe-
cially about their target binding sites (even in well-characterized organisms) you could focus on computational
tools designed for the discovery of novel regulatory elements, where nothing is known a priori of the tran-
scription factor or its preferred binding sites. If you provide a collection of sequences that correspond to the
regulatory regions of genes that are believed to be co-regulated, the computational tool identifies short DNA
sequence 'motifs' that are statistically over- or under-represented in these regulatory regions. Accurate iden-
tification of thesemotifs is very difficult because they are short signals (typically about 10 bp long) in themidst
of a great amount of statistical noise (a typical input being one regulatory region of length 1,000 bp upstream of
each gene). Also, there is marked sequence variability among the consensus binding sites of a given tran-
scription factor, and the nature of the variability itself is not well understood.

There are numerous tools available for this task of motif prediction. They differ from each other mainly in their
definition of what represents amotif and what would be an acceptable model for statistical over-representation
of amotif. A comprehensive list of tools that could be used (table adapted from Tompa et al, 2005, Nature
23(1):137-144) is presented in "Supplementary Information" on page 160. This sequence information can be
used to carry out TFBS analysis, off the PhenoGenwebsite, using any of these tools. See "Promoter Analysis
Tools".

Running oPOSSUM
1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to run oPOSSUM.
4. Click thePromoter tab. ThePromoter page displays.
5. Click Run a new oPOSSUM analysis. The oPOSSUM page displays.

6. Change the parameters as necessary, using the drop-down lists.
l Set theSearch Region Level.
l Set the Conservation Level.
l Set theMatrix Match Threshold.

7. Change the Description, if appropriate.
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8. Click Run oPOSSUM. Running oPOSSUM takes time. When your results are available for viewing,
an email is sent to the address you provided in theRegistration page.

Running MEME
1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to runMEME.
4. Click thePromoter tab. ThePromoter page displays.
5. Click Run a new MEME analysis. TheMEME page displays.

6. Select theUpstream sequence length.
7. Choose theMotif distribution.
8. Specify theMinimum Width andMaximum Width of eachmotif.
9. Specify theMaximum number of motifs to find.
10. Change theDescription, if appropriate.
11. Click Run MEME. RunningMEME takes time. When your results are available for viewing, an email is

sent to the address you provided in theRegistration page.

Running Upstream Sequence Extraction
The upstream sequence extraction tool is used to extract the upstream genome sequence of a particular gene.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to run Upstream Sequence Extraction.
4. Click thePromoter tab. ThePromoter page displays.
5. Click Run a new Upstream Extraction. TheUpstream Extraction page displays.
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6. Select theUpstream sequence length.
7. Click Run Upstream Sequence Extraction. Running Upstream Extraction takes time. When your

results are available for viewing, an email is sent to the address you provided in theRegistration page.

Viewing Promoter Results
Three types of Promoter results may be available, depending on the Promoter analyses you chose to run:
oPOSSUM, MEME, or Upstream Sequence Extraction.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view promoter results.
4. Click thePromoter tab. ThePromoter page displays with results organized into tables by the type of

analysis performed.
5. Do one of the following:

l Click a promoter analysis to view the results of the selected analysis; oPOSSUM, MEME, or
Upstream Sequence Extraction.

l Click theDelete icon to delete the results of a promoter analysis.
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Viewing oPOSSUM Results

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view oPOSSUM results.
4. Click thePromoter tab. ThePromoter page displays with results organized into tables by the type of

analysis performed.
5. Click a row in the oPOSSUMResults table. The oPOSSUMResults page displays the parameters

used in the oPOSSUM analysis. It also displays transcription factors based on theOne-Tailed Fisher
Extract Probability Analysis and the Z-score Analysis.

126



oPOSSUMResults Table

The table contains the results from oPOSSUM, ordered by p-value frommost to least significant (lower to
higher p-value). The columns are:

Column Name Description
TF The name of the transcription factor.

TF Class The class of transcription factors to which the transcription factor belongs.

TF SuperGroup The taxonomic supergroup to which this transcription factor belongs.

IC The information content or specificity of this TFBS profile's position weight matrix.

Background
Gene Hits

The number of genes in the background set for which this TFBS was predicted within
the conserved non-coding regions.

Background
Gene Non-Hits

The number of genes in the background set for which this TFBS was NOT predicted
within the conserved non-coding regions.

Target Gene Hits The number of genes in the included target set for which this TFBS was predicted
within the conserved non-coding regions.

Target Gene
Non-Hits

The number of genes in the included target set for which this TFBS was NOT predicted
within the conserved non-coding regions.

Background
TFBS Hits

The number of times this TFBS was detected within the conserved non-coding regions
of the background set of genes.

Background
TFBS rate

The rate of occurrence of this TFBS within the conserved non-coding regions of the
background set of genes. The rate is equal to the number of times the site was pre-
dicted (background hits) multiplied by the TFBS profile, divided by the total number of
nucleotides in the conserved non-coding regions of the background gene set.

Target TFBS hits The number of times this TFBS was detected within the conserved non-coding regions
of the target set of genes.

Target TFBS rate The rate of occurrence of this TFBS within the conserved non-coding regions of the
included target set of genes. The rate is equal to the number of times the site was pre-
dicted (target hits) multiplied by the TFBS profile, divided by the total number of nucle-
otides in the conserved non-coding regions of the included target gene set.
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Z-score The likelihood that the number of TFBS nucleotides detected for the included target
genes is significant as compared with the number of TFBS nucleotides detected for the
background set. Z-score is expressed in units of magnitude of the standard deviation.

Fisher score The probability that the number of hits vs. non-hits for the included target genes could
have occurred by random chance based on the hits vs. non-hits for the background set.

P-value The probability that the number of hits vs. non-hits for the included target genes could
have occurred by random chance based on the hits vs. non-hits for the background set.

1. Click a TF ID to open the JASPER website for that transcription factor.
2. Click a link in the Target Gene Hits column to view a list of associated genes for that link. TheAsso-

ciated Genes page displays.
3. Click a link in the Target TFBS Hits column to view a list of associated genes for that link. TheAsso-

ciated Genes page displays.

Viewing MEME Results

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view MEME results.
4. Click thePromoter tab. ThePromoter page displays with results organized into tables by the type of

analysis performed.
5. Click a row in theMEME Results table. TheMEME Resultspage displays. An explanation of the

MEME results is located at the bottom of the results.
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Viewing Upstream Sequence Extraction Results

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to perform a literature search
4. Click thePromoter tab. ThePromoter page displays with results organized into tables by the type of

analysis performed.
5. Click a row in theUpstream Sequence Extraction Results table. TheUpstream Sequence Results

page displays.
6. Click theDownload icon to download the results.
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Homologs Overview
Homologous genes demonstrate high sequence similarity and can demonstrate similarity in function. Homolo-
gous sequences (genes) can be divided into two groups: Orthologs and Paralogs. Homologous sequences
(genes) in two different species originating from a common ancestor are know as Orthologs. Duplication of a
homologous sequence in a given species results in Paralogous sequences with a different chromosomal loca-
tion.

The Homolog tab in the PhenoGenwebsite allows you to obtain information regarding chromosomal locations,
for genes in a given gene list, in other genomes. For example, you can obtain the chromosomal location for a
list of different genes in themouse genome as well as the chromosomal location for the known homologous
genes in the rat and human genomes.

Viewing Homologs
1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view homologs.
4. Click theHomolog tab. TheHomologous Genes page displays a table that shows:

l Gene Identifier
l HomoloGene ID (NCBI)
l Gene Symbol in other species
l Homolog species, identifier, and chromosomal location

5. Click a link in any cell to open the website for your selection.
6. Click theDownload icon to download the information in the table.
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Viewing Pathways
Signaling Pathway Impact Analysis (SPIA) is a tool for analyzing the hypothetical impact of differences in tran-
scription levels of a set of genes on signaling pathways defined by KEGG (Ogata et al 1999). The input is a set
of gene identifiers and their fold changes. ThePathways tab only displays when a full change or correlation
coefficient is available.

The influence of differences in transcription of the input gene set on a particular pathway is assessed using
twomeasures:

1. NDE: The number of genes from the set that are in the pathway.
2. PERT: The possible perturbation of the pathway due to changes in expression of genes from the input

gene set, that is, the influence of the input genes on the pathway based on their position in the pathway
and their magnitude of change.

For each pathway, a p-value is calculated for each of thesemeasures. PNDE is the p-value associated with an
enrichment test (i.e., is the number of differentially expressed genes in the given pathway more than one
would expected by chance). The values for PNDE are calculated using the assumption that NDE follows a
hyper-geometric distribution.

The second probability, PPERT, is calculated based on the estimated amount of perturbation in each pathway
due to the differential expression of the input genet set. Each pathway is represented as a network, with
genes/proteins for nodes and directed edges indicating interactions between them. The perturbation of the
pathway caused by each gene/protein is calculated using the number of genes/proteins it influences (either
activates or suppresses) and its magnitude of change.

SPIA takes a table of differentially expressed genes and their fold changes as input and returns a table of sig-
naling pathways containing at least one of the genes on the list. This table summarizes the impact of the dif-
ferentially expressed genes on each pathway and contains links to images from the KEGG pathways site and
to other summary information.

The output also includes a summary plot, where each pathway containing at least one gene from the input list
is plotted to its (-log transformed) values for PNDE and PPERT. The plot indicates where themost impacted
pathways lie, with respect to two statistical thresholds. The first is the family-wise error rate, indicated by the
solid red line in the plot. The second is the false discovery rate, indicated by the solid blue line in the plot.

131



References

1. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, KanehisaM (1999). KEGG: Kyoto Encyclopedia of
Genes andGenomes. Nucleic Acids Res 27(1):29-34.

2. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R
(2009). A novel signaling pathway impact analysis. Bioinformatics 25(1):75-82.

Viewing Analysis Statistics
TheAnalysis Statistics tab only displays if your gene list was derived from the analysis of a dataset.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view analysis statistics.
4. Click theAnalysis Statistics tab. TheStatistics Values table displays.
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The tables displays gene identifiers, gene symbols, the raw p-values and the adjusted p-values. Depending on
the number of groups and the type of analysis used, it may also display groupmeans, F-statistic, mean inten-
sity, correlation coefficient, difference in log base 2 intensity, t-statistic, or parameter estimates.

Viewing Gene Expression Data
TheView Gene Expression page allows you to obtain gene expression intensity values for a gene or gene list
from a normalized dataset, or specify a pre-created gene list. The results table displays group-level infor-
mation for each gene, such as groupmeans and group standard error.

You can view gene expression data from themainmenu in two ways: viaMicroarray Analysis Tools or via
Gene List Analysis Tools:

Microarray Analysis Tools

1. ChooseMicroarray Analysis Tools in themainmenu.
2. Click View expression values for a list of genes in a dataset. TheExpression Values page dis-

plays.
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Gene List Analysis Tools

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view gene expression data.
4. Click theExpression Values tab. TheExpression Values page displays.

On the Expression Values page:

The options on the Expression Values page are the same, regardless of how you navigated to the page.

1. OPTIONAL: Click theView link in theDetails column to view dataset details such as name, descrip-
tion, organism, arrays in dataset, andmore. See "Viewing Dataset Details" for more information.

2. Click the dataset for which you want to see gene expression data. A page displays the normalized ver-
sions of that dataset.
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3. Click the normalized version for which you want to see gene expression data. A page displays gene
lists for that version.

4. Click the gene list for which you want to see gene expression data. TheView Gene Expression page
displays.
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5. You can:
l Click theArray Values link to view the individual array values.
l Click theGroup Means link to view the groupmean values (this is the default view).
l Click Download to save the groupmeans as well as the individual array values. Follow the

instructions that display as you open or save the files. These instructions vary depending on
your Internet browser (e.g., Internet Explorer, Firefox, Safari).

Viewing Exon-level Correlations
You can create an exon correlation heatmap for a specific gene, species, and tissue. The data is retrieved
frommultiple databases, so generating the initial graphics may take a few moments.You can display the heat-
maps for two transcripts of a gene side-by-side to determine the transcript that best fits the expression cor-
relation patterns.

Gene List Analysis Tools

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view gene expression data.
4. Click theExon Correlationtab. TheExon-Exon Correlations page displays.

On the Exon-Exon Correlations page:

1. Select theGene for which you want to create an exon correlation.
2. Select theSpecies and the Tissue to which this correlation pertains.
3. Click Get Exon Correlations. The exon correlations display.
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4. OPTIONAL:Display two heat maps by selecting both a Left and Right Transcript in the In the
Gene/Transcript section at the top left.

5. OPTIONAL: Hover over the schematic on top of the heatmap or click on individual exons in the sche-
matic to find out more information about individual exons and the probe sets that align to them.

By default, the first graphic, which is generated through the University of California Santa Cruz Genome
Browser (http://genome.ucsc.edu/), displays the probe sets from the exon array and the annotated Ensembl
transcripts (i.e., isoforms) for the input gene.

The exons are color-coded based on their level of annotation according to Affymetrix. The red probe sets are
included in the core set of probe sets and indicate high confidence in the annotation. The blue probe sets are
included in the extended set of probe sets according to Affymetrix, and the green probe sets are from the full
set of probe sets and indicate the least amount of confidence in the annotation. The next track assigns a
number to each annotated exon of the gene to aid in interpretation of the heatmap that follows.

By default, the second graphic is a heatmap that displays the correlations among exons of a given transcript
of the gene.

Each row and column represents a probe set that passed the filtering criteria specified at the top right side of
the page. Along the top of the heatmap is a schematic of the exon structure of the transcript. The boxes rep-
resent exons of the transcript and are numbered, as in the top figure. Grey boxes are exons that are probed by
the array, met the filtering criteria, and are displayed in the heatmap. Exons that do not satisfy these criteria
are colored based on the reason why they are not included in the heatmap.

l No Probesets (Red) indicates that the Affymetrix array does not contain any probe sets that target
this exon.
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l Masked (Light Blue) indicates that the probe set was removed due to poor intergrity of its probes (i.e.,
the probes aligned tomany regions of the genome or targeted a region of the genome that harbored a
known SNP) .

l Heritability (Blue) indicates that the probe set had a low (according to filtering criteria) heritability in
the RI panel.

l Annotation Confidence (Orange) indicates that probe sets that align to this exon are not included
due the annotation confidence criteria selected for filtering.

l Not DABG (Green) indicates that the probe sets that align to this exon are not expressed above back-
ground according to the DABG criteria selected for filtering .

l Multiple Reasons (Yellow) indicates that the exon was filtered out for more that one reason, e.g., low
heritability and not DABG

In the top right section, choose the probe sets to display for the heatmap based on the:

l Annotation Confidence from Affymetrix (Core, Extended, or Full).
l Heritability of the probe set’s expression in the RI panel.
l Proportion of samples with expression values above background (Detected Above Background–

DABG).

Choose theAdv. Display Options tab to show advanced display options that allow you to include probe sets
that align to an intronic region of the gene or align to the opposite strand from which the gene is coded.
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Saving a Gene List as Other Identifiers
You can save a gene list using different identifier types.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list that you want to edit and save as a new gene list.
4. Click theSave As tab. TheSave As page displays.

5. Enter a new Gene List Name.
6. Enter the Gene List Description.
7. Choose Identifier Types from the Available Target Databases, Specific Affymetrix Arrays, and Spe-

cific CodeLink Arrays.
8. Click Save As. The gene list is copied and saved with the new name, description,and identifiers from

the selected database. Click Reset to return all the fields to their original values.

See "Viewing Gene Lists" for instructions on viewing the new gene list.
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Comparing Gene Lists
TheCompare Gene Lists page allows you to compare gene lists.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list that you want to compare with other gene lists.
4. Click theCompare tab.

5. Choose one of the following:
l Compare With One Gene List. A table of gene lists for comparison displays.
l Compare With All Gene Lists.

If you chooseCompareWith OneGene List:

6. Choose a gene list from the table that displays.
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7. Do one of the following:
l Click Intersect Gene Lists to view a list that displays the genes that are in both selected

lists.
l Click Union of Gene Lists to combine the two gene lists into one gene list
l Click Subtract List 1 from List 2 to remove the genes in list 1 from list 2. The resultant gene

list displays the genes that are only in list 2.
l Click Subtract List 2 from List 1 to remove the genes in list 2 from list 1. The resultant gene

list displays the genes that are only in list 1.
8. Click Save Gene List if you want to save the resulting gene list.

If you chooseCompareWith All Gene Lists, a table displays all the gene lists that contain the same genes as
the list you chose to compare with. Click the name of a gene list to view it.
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Uploading a Gene List
You can upload an existing gene list to the PhenoGenwebsite for analysis. Your gene list must be a text file
andmust contain only one gene identifier per line or it will not upload correctly. When you upload gene list
data, you can give other users permission to see the gene list.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Upload or create a new list of genes to use for an analysis. TheCreate a New Gene List

page displays.

3. Enter theGene List Name.
4. Select theOrganism from the drop-down list.
5. Enter theGene List Description.
6. Make sureUpload Gene List File is selected.
7. Click Browse, and follow the instructions to select the gene list you want to upload.
8. Click Create Gene List. The new gene list is created.
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Downloading a Gene List
You can download a gene list from the PhenoGenwebsite to analyze it using your own tools or to distribute it
to others.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click theDownload icon beside the gene list you want to download.
4. Click the checkbox next to the gene list(s) you want to download. The second and third options only dis-

play if the gene list was derived from amicroarray analysis.

5. Click Download.
6. Choose to open or save the files, and follow the instructions that display. These instructions vary

depending on your Internet browser (e.g., Internet Explorer, Firefox, Safari, etc.).

Deleting a Gene List
If you no longer need a gene list, you can delete it.

Important!Any references to the gene list, such as literature searches and promoter analysis results, are
deleted when the gene list is deleted.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click theDelete icon beside the gene list you want to delete.
4. Review the data that is linked to the gene list.
5. Click Delete Gene List. The gene list is deleted.
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Sharing a Gene List
You can view the users who have access to your gene lists and grant users access to a gene list that you
own. You cannot share a gene list that you do not own.

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view user access.
4. Click theShare tab.

Note: If you are the owner of the gene list, you can allow other users to view the gene list.

5. Select the users to whom you want to give view permissions for your gene list.
6. Click Update Gene List Users at the bottom of the window.
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Investigating QTL Regions
QTL Tools allows you to useQTL tools to assess whether the genomic location of any of the genes in a gene
list fall within the QTL regions for the phenotypes of your choice. Information about the phenotypic QTLs can
be obtained fromMGI (mouseQTLs) or RGD (rat andmouseQTLs).

Choose an option to get started:

l Enter phenotypic QTL information. See "Entering Phenotypic QTLs".
l Calculate QTLs for a phenotype. See "Calculating QTLs for Phenotype".
l Downloadmarker set used in eQTL calculations. See "Downloading eQTLMarker Sets".
l View physical location and eQTL information about specific genes. See "Viewing Location and eQTL".

Entering Phenotypic QTLs
You can enter phenotypic data to create a list of QTLs for a phenotype. For example, you could define a set of
QTLs for alcohol preference.

1. ChooseQTL Tools in themainmenu.
2. Click Enter phenotypic QTL information. TheEntering Phenotypic QTLs page displays.
3. Enter thePhenotype orQTL List Name. This field is referenced on theViewing Location and eQTL

page.
4. Select the organism to which this list pertains.
5. Enter the Locus/Region Identifier, Chromosome Number/Name, andStart andEnd base pair (bp)

positions.
6. OPTIONAL: Click theAdd New Locus/Region link to createmore than oneQTL range for a par-

ticular phenotype.
7. Click Save QTL List.
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Calculating QTLs for Phenotype
You can calculate QTL for uploaded phenotype data using pre-compiledmarker sets. The website supports
phenotypic QTL analysis for BXD recombinant inbredmice and HXB/BXH recombinant inbred rats.

1. ChooseQTL Tools in themainmenu.
2. Click Calculate QTLs for phenotype. TheCalculate QTLs for Phenotype page displays.
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3. Choose themarker dataset: Public BXD RI Mice, Public HXB/BXH RI Rats, orPublic ILSXISS RI
Mice.

4. OPTIONAL: Click Create New Phenotype at the top right to upload, manually enter, or copy phe-
notype data. Select Enter Variance Values to enter variances for your groups. See "Using Phenotype
Data in Correlation Analysis" for upload, enter, copy, and delete instructions.

5. Click a row in the Phenotype Values table.
6. ChooseYes orNo to weight the analysis based on variance. If variance values were not included

when the phenotype information was uploaded, this selection is not available.
7. Enter the number of permutations between 0 and 1 000 000. Zero indicates that empirical p-values

are not calculated.
8. Click Run. A LOD plot displays.
9. Choose an option to narrow the results: LOD threshold, p-value threshold, genomic location, and

enter associated criteria.
10. Choose amethod to calculate confidence interval (see descriptions in theSummary of Results sec-

tion).
11. Click Run Summary. The results that satisfy your criteria display.

QTL Calculation
Due to the largemarker density of the two available marker sets, the QTL calculation is done using a simple
marker regression. LOD (log base 10 odds ratio) scores are calculated for eachmarker and displayed on the
LOD plot. When strain variances or standard deviations are available you can weight themarker regression by
the inverse of the strain variance, to givemore weight to strain means with lower variance.
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Marker Sets

Markers for BXD Recombinant InbredMice

Markers for the BXD recombinant inbred panel were retrieved from theWellcome-CTC Mouse Strain SNP
Genotype Set (http://www.well.ox.ac.uk/mouse/INBREDS/). SNPs were retained if their marker ID could be
matched with a SNP in the Ensembl 56 dbSNP128mouse data retrieved through BioMart (http://ww-
w.ensembl.org/biomart/index.html) and if the SNP was also give a valid position in themouse genome. In
addition, individual SNPs were dropped if they did not differ between the two parental strains (C57BL/6J and
DBA/2J) and if they had unknown genotypes for all BXD RI strains.

11 SNPs were removed because they hadmore than three strains with double recombinant genotypes. A dou-
ble recombinant genotype occurs when a SNP between two SNPs that are less than 1Mb has a different gen-
otype for a strain than the SNPs on either side. Often these double recombinants represent a genotyping error
rather than two instances of recombination so close together.

As an additional quality control measure, individual SNPs were evaluated for segregation distortion. This
measure looks at the proportion of subjects/samples in each genotype category and assesses the probability
of this distribution. In the case of recombinant inbred strains, the probability of each genotype is 50%. Two
SNPs (rs13459145 and rs13478690) were dropped because of significant segregation distortion (p < 1.0 X
10e-8).

Finally, a genomic mapwas estimated from the remaining SNPs, and if a SNP was estimated to havemore
than 40 cM between it and another SNP on either side, it was eliminated from the data set (one SNP). These
quality control measures resulted in a final dataset with 91 strains including the parental strains and 6,093
SNPs.

Markers for HXB/BXH Recombinant Inbred Rats

Markers for the HXB/BXH recombinant inbred panel were retrieve from the STAR consortium
(http://www.snp-star.eu/). SNPs were eliminated if they did not differ between parental strains (SHR/Ola and
BN-Lx), if they were not genotype for either parental strain, or if they were heterozygous for either parental
strain. If the genotype for a recombinant inbred strain was unknown, but the two surrounding SNPs had the
same genotype, themissing genotype was assigned the value of the surrounding SNPs (53% of unknown gen-
otypes were changed).These quality control measures resulted in a final dataset with 34 strains including the
parental strains and 13,143 SNPs.

Genome-wide P-Values

A genome-wide p-value is calculated using permutation (Churchill and Doerge 1994) to account for multiple
testing across markers. To calculate these p-values, phenotype and genotype associations are permuted and
for each permutation, themaximum LOD score is retained. The distribution of thesemaximum LOD scores
then becomes the null distribution from which p-values are calculated. For example the p-value of a LOD
score of 3 is equal to the proportion of permutations where themaximum LOD score was greater than 3.
Although results for all markers are shown in the LOD plot, only unique strain distribution patterns were used
in the calculation of genome-wide p-values.

SNPs have identical strain distribution patterns in inbred panels, and when strains are grouped by genotype
for either marker, the same two groups are formed. When two SNPs have identical strain distribution patterns,
their LOD score is the same. Identical strain distribution patterns in adjacent markers are generally caused
by linkage disequilibrium while identical strain distribution patterns in non-adjacent markers may be a con-
sequence of using only a small number of strains.

Summary of Results

After the QTL calculation, you can limit the results to markers that reach some threshold (p-value or LOD
score) or to markers within a certain genomic area. Results are shown on the strain distribution pattern (SDP)
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level. Theminimum andmaximum basepair positions on each chromosome are shown for each SDP that
meet the criteria.

You can also calculate location confidence intervals for QTLs that met the criteria you specified when you
summarized the results. In addition to not calculating confidence intervals at all, three different methods are
available: non-parametric bootstrap, LOD support interval, and Bayesian credible interval. Confidence inter-
vals are only calculated for themaximum LOD score on each chromosome.

l The non-parametric bootstrap confidence intervals are calculated using themethods outlined by Vis-
scher et al (1996). One thousand bootstrap samples are taken to calculate intervals, and you can
choose your own probability coverage. The bootstrap non-parametric measure is useful when it is pos-
sible that more than oneQTL is in the area.

l For the LOD support interval, the confidence interval is identified by locating themarker on either side
of themaximum LOD scores were the LOD score first drops by the LOD score threshold you specified.

l The Bayesian credible interval is calculated as outlined inManichaikul et al (2006). This article also
compares the threemethods and recommends against the bootstrap non-parametric method, but their
analysis was done with relatively sparsemarker maps on backcross and intercross populations using
only oneQTL.
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Downloading eQTL Marker Sets
You can download the data files used to calculate eQTLs.

1. ChooseQTL Tools in themainmenu.
2. Click Download marker set used in eQTL calculations. TheDownloadMarker Sets page displays.
3. Click the checkbox next to the data file(s) you want to download.
4. Click theDownload button.

5. Choose to open or save the files, and follow the instructions that display. These instructions vary
depending on your Internet browser (e.g., Internet Explorer, Firefox, Safari, etc.).
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Viewing Location and eQTL
The location graphic allows you to investigate and use expression QTL (eQTL) datasets. By default, only the
physical locations are shown on the graphic. You can click the "Show locations of transcription control in
brain" check box to display the locations of transcription control. These green arrows represent the genomic
position(s) that control transcription of the candidate genes in the gene list (expression QTLs, or eQTLs).You
can also change the significance level for displaying eQTLs

You can view the location and eQTL data for a gene list in two ways:

Gene List Analysis Tools

1. ChooseGenes List Analysis Tools in themainmenu.
2. Click Analyze a gene list. A page displays the gene lists to which you have access.
3. Click the gene list for which you want to view location and eQTL.
4. Click the Location (eQTL) tab. The Location page displays.

QTL Tools:

1. ChooseQTL Tools in themainmenu.
2. Click View physical location and eQTL information about specific genes from a gene list. A

page displays the gene lists to which you have access.
3. Click the gene list for which you want to view location and eQTL. The Location and eQTL page dis-

plays.

The data on the page looks the same, regardless of the way you access the page. You can:
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l Click theView in table form link to see a table of all of the genes currently displayed on the graphic. If
any of the probe sets for a given gene have a significant eQTL, all of the probe sets for that gene are dis-
played in the table, but only themost significant eQTL position ("Max LOD") and the associatedmarker
locations are shown on the graphic.

o Click theView link in the gene table to display individual LOD plots for each probe set. Copy
these by right-clicking on the image.

o Click theDownload button to download the table into a tab-delimited text file.
o Click theCustomize this view button to change the default view of the table, which includes

all probe sets for a given gene.
l ChooseGenes (and all associated probesets) from the [selected] list that meet the

restriction criteria to restrict the list to those with eQTLs (probe sets) that overlap the
selected bQTL intervals.

l Select Probesets that are in the [selected] gene list to restrict the list to probe sets
(as opposed to genes) whose expression values are significantly correlated with the phe-
notype. These probe sets are also identified by the asterisk in the first column of the
table.

l Selelct Probesets that have eQTL p-value < [selected value] to restrict the list to only
the probe sets passing the desired threshold.

l ChooseGenes (and all associated probesets) from the [selected] list with probe-
sets that did not meet the restriction criteria or were not considered in eQTL to
restrict the list to those that were not considered in eQTL.

l Click theDownload icon to download the chromosomemap as a JPEG graphic.
l Click theSave displayed genes link to save the displayed genes as a gene list.

l Click theMagnify icon in the graphic to expand the graphic to the full page.
l Click a chromosome in the graphic to show an expanded view. See "Expanded Chromosomal View".
l Set theGeneGraphic Settings:

o Show physical location of genes - Choose this option tomark the physical location of genes
with a red arrow.

o Show genomic locations of transcription control in...Choose this option tomark the tran-
scription control locations with a green arrow, and choose a corresponding eQTL p-value. For
mouse, only brain is available. For rat, options are brain, heart, liver, and brown adipose.

l Click Advanced Settings to enter user-defined regions, such as QTLs. You can also:
o Click View to see details about the specific region.
o Click theDelete icon beside the region you want to delete.
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Expanded Chromosomal View
The expanded chromosomal view zooms in on the specific location you choose in the graphic, shows the
zoom location, and allows you to set basepair start (left) and end (right) positions.
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Download Resources
Downloads allows you to download:

l Expression Data Files (Expression Values, eQTL, and Heritability).
l Genomic Marker Data Files (Markers and eQTL).
l RNA Sequencing BED/SAM Data Files
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Principal Investigator Overview
Only users withPrincipal Investigator permissions can see the Principal Investigator pages.

The Principal Investigator (PI) is often the head of a lab, is responsible for the array data, andmust grant per-
mission to other users to view arrays which s/he is responsible for. When arrays are uploaded, the PI can
assign permission individually to any users that s/he wants to have access to the data. If a user wishes to
gain access to an array, the user can add the array to a dataset, and a request for permission is sent to the PI
who owns the array. The PI can alsomake array data accessible to all.

A user who is a Principal Investigator sees a Principal Investigator menu on theHome page after Login, below
theWhat would you like to do box.

Choose an option to get started:

l Approve array requests. See "Approving Array Requests".
l Grant array access to an individual. See "Granting Array Access".
l Grant open access to a set of arrays. See "Granting Array Access".
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Approving Array Requests

Only users withPrincipal Investigator permissions can approve pending requests for arrays.

TheApproval page allows a Principal Investigator to review the users who have requested access to his
arrays. The PI can approve or deny access to the array.

1. Click Home in themainmenu. TheHome page displays.
2. Click Approve array requests in thePrincipal Investigator section below theWhat would you like to

do section. TheApproval  page displays.
3. Click Approve orDeny next to each request, or click Approve All orDeny All.
4. Click Submit Array Approvals. An email is sent to each requester that informs them whether their

array request(s) has been approved or denied.
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Granting Array Access

Only users withPrincipal Investigator permissions can grant array access.

TheGrant Access page allows a Principal Investigator to give an individual user access to the arrays for
which s/he is responsible. It also allows a PI to give open access to the array data in aMIAME-compliant
experiment for the use of ALL registered users of the PhenoGenwebsite.

Granting Access

1. Click Home in themainmenu. TheHome page displays.
2. Click Grant array access in thePrincipal Investigator section below theWhat would you like to do sec-

tion. TheGrant Access  page displays.

Note:Click View in the Experiment Details column to see array details for an experiment.

For an Individual

On theGrant Access page:

1. Click theGrant to Individualicon in the row of the experiment to which you want to grant access.
2. Enter the first or last (or both) names of the individual.
3. Click Find User. Any matches display.
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4. Click Choose [User Name] to give that user access to the array.

Note: The user is given access to the current arrays in the PhenoGen array database. As experiments are
added, access must be granted for those new experiments.
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For Everyone

On theGrant Access page:

1. Click theGrant to Public icon in the row of the experiment to which you want to grant access.
2. Click Yes. The data in the chosen experiment is now available to all registered users of the PhenoGen

website.
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Supplementary Information
Supplementary Information contains additional details about various topics. See:

"Additional Quality Control Sources" on page 160

"All About R" on page 160

"Expression QTLDerivation" on page 161

"MIAME Overview" on page 163

"Promoter Analysis Tools" on page 165

Additional Quality Control Sources
Some of the QC procedures for commonly usedmicroarrays can be found on themanufacturer's websites.
For further details, visit the following URLs:

l Affymetrix: http://www.affymetrix.com
l CodeLink: http://www.codelinkbioarrays.com

Additional computational QC tools for the R Statistical Package can be found on:

http://bioinformatics.picr.man.ac.uk/research/software/simpleaffy/qcstats.html

http://plmimagegallery.bmbolstad.com/

All About R
R is a language and environment for statistical computing and graphics. R provides a wide variety of sta-
tistical (linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, clus-
tering, ...) and graphical techniques, and is highly extensible. R is available as Free Software under the terms
of the Free Software Foundation's GNU General Public License in source code form. It compiles and runs on
a wide variety of UNIX platforms and similar systems (including FreeBSD and Linux), Windows andMacOS.

Citation for R

R Development Core Team (2006). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. http://www.R-project.org

Citation for Bioconductor

Gentleman RC, Carey VJ, Bates DM, Bolstad B, DettlingM, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hor-
nik K, Hothorn T, HuberW, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C,
Smyth G, Tierney L, Yang JYH, Zhang J (2004). Bioconductor: Open software development for com-
putational biology and bioinformatics. Genome Biology 5:R80.

For more details about R, see the topics Viewing the R Project Homepage andViewing R Manuals.

Viewing the R Project Homepage
1. Open a new browser window.
2. Enter the URL http://lib.stat.cmu.edu/R/CRAN/
3. Click R Homepage in the vertical menu on the left. TheR Homepage displays.

Viewing R Manuals
1. Open a new browser window.
2. Enter the URL http://lib.stat.cmu.edu/R/CRAN/
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3. Click Manuals in the vertical menu on the left. TheR Manuals page displays.
4. Select and click themanual you want to view.

Expression QTL Derivation
For bothmice and rats, mean expression levels within strains were used as phenotypic values in a QTL anal-
ysis implemented in QTLReaper, which is written in C and compiled as a Pythonmodule. QTL Reaper can be
downloaded from http://qtlreaper.sourceforge.net/. A weightedmarker regression analysis was used within
QTLReaper to calculate LRS scores for eachmarker. LRS scores were transformed to LOD scores for con-
venience by dividing by (2 x ln(10)). The regression is weighted to account for the different number of arrays
within strains used to calculate strain means. The weight is based on the repeatability of the transcript inten-
sity and the number of arrays used to calculate the strain mean (Carlborg et al. 2005). The empirical p-value
with respect to themaximum LOD score was calculated for each transcript by permutation (Churchill and
Doerge, 1994). The empirical p-value adjusts for themultiple comparisons due to themultiple markers per tran-
script, but not for themultiple comparisons due to themany transcripts. To adjust for themultiple comparisons
due tomany transcripts, false discovery rates were calculated according to Benjamini and Hochberg (1995).

Mouse, whole brain, Affymetrix Mouse 430 version 2 array
Whole-brain gene expression data was obtained for a panel of 30 BXD RI strains plus the two parental strains
on theMOE430v2 array from Affymetrix. Probes were eliminated prior to normalization if their sequence did
not match any part of the NCBI m37 build of themouse genome, if their sequencematchedmultiple locations
in themouse genome, or if the location in the genome that the probe didmatch contain a single nucleotide poly-
morphism between C57BL/6J and DBA/2J according to the whole genome sequence data obtained from the
Sanger Institute (Keane et al. 2011). Entire probe sets were eliminated if less than four of the original probes
remained after filtering. Probe set intensities were normalized and summarized using RMA. If a probe set did
not have at least one present call throughout all samples, the probe set was dropped from the data set. Of the
41,581 probe sets retained after masking, 30,031 probe sets remained after filtering by present/absent calls.
Data were thoroughly examined for batch effects related to processing. Themicroarrays were run over a year
and a half period, resulting in 15 batches. Both batches and strains can contribute to non-random data dis-
tribution and a new method for removing batch effects, while retaining strain effects, was used (personal com-
munication, Evan Johnson, Boston University) on the set of 30,031 probe sets detected above background.
This method combines a simple rank test and a Bayesian hierarchical framework similar to the empirical
Bayes method, Combating Batch Effects When Combining Batches of Gene ExpressionMicroarray Data
(ComBat) (Johnson et al., 2007). This version of the data is available in the Download Resources section. The
two parental strains were not included in eQTL calculations.

An original set of 115,183 SNPs markers and their genotypes for 89 BXD RI strains and the two parental
strains was downloaded from theWellcome-CTC Mouse Strain SNP Genotype Set
(http://gscan.well.ox.ac.uk/gsBleadingEdge/mouse.snp.selector.cgi). The location of thesemarkers is based
onMouse Build 37/mm9. However, the set of markers used for the eQTL analyses was reduced from the orig-
inal set to eliminate SNPs with missing genotype information for the 30 RI strains, SNPs that did not differ
between the RI strains, and SNPs with genotype calls that did not follow the known breeding scheme of the
panel. This reduced the SNP set to 7,226 SNPs. This set of SNPs was reduced to unique strain distribution
patterns with respect to the 30 RI strains used in our analysis. This final set contained 986 informative strain
distribution patterns. Both the normalized expression data and themarkers used for the eQTL analysis are
available for download from the PhenoGenwebsite.

Mouse, whole brain, Affymetrix Mouse Exon Array
Whole-brain gene expression data was obtained for a panel of 59 LXS RI strains on the Affymextrix Mouse
Exon Array 1.0 ST. Individual probes were eliminated prior to normalization if their sequence did not match
any part of the NCBI m37 build of themouse genome, if their sequencematchedmultiple locations in the
mouse genome, or if the location in the genome that the probe didmatch contained a SNP between any of the
19 strains in the public InbredMice dataset where genotype data is available at the ImputedGenotype
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Resource from the Jackson Laboratory; http://cgd.jax.org/datasets/popgen/imputed.shtml (samemask that
is implemented on PhenoGen). Entire probe sets were eliminated if less than three of the original probes
remained after filtering.

Arrays were examined for quality and arrays that did not meet quality standards were eliminated. Probe inten-
sities were normalized and summarized into core transcript clusters using RMA. The dataset, including arrays
from ILS, ISS, C57BL/6J, and DBA/2J, was adjusted for batch effects using the empirical Bayes method out-
lined in Johnson et al (2007). TwoC57BL/6J arrays were analyzed in each batch, andmost batches also had
two DBA/2J arrays. Strain means were calculated after adjusting for the effect of breeding location. For most
strains, three animals were bred at the Jackson Laboratory in Bar Harbor, Maine and three animals were bred
at the University of Colorado School of Medicine in Aurora, Colorado. Themarker set of eQTL calculations
used on the LXS RI panel came from Gary Churchill at the Jackson Laboratory. SNP genotypes were
assessed using the Affymetrix Mouse Diversity Genotyping Array. Of the 314,865 SNPs retrieved, 34,475
SNPs indicated different homozygous genotypes between parental strains (ILS and ISS), had valid dbSNP
identifiers, and had nomissing or heterozygous genotype calls. The set of markers used for the eQTL anal-
yses was reduced from the original set to eliminatemarkers that had identical strain distributions (with respect
to the 59 strains used in our analysis). This final set contained 1,475 informativemarkers. Both the normalized
expression data and themarkers used for the eQTL analysis are available for download from the PhenoGen
website.

Rat, whole brain, CodeLink Whole Genome Rat Array
Whole-brain gene expression data was obtained for a panel of 25 HXB/BXH RI strains plus the two parental
strains on the CodeLink Rat Whole Genome Array. In preparation for normalization, probes were removed
from the datasets if they were one of the negative or positive controls placed on the array by themanufacturer.
Next, individual values were eliminated based on the quality flags assigned by the CodeLink Expression Anal-
ysis Software. Values were eliminated if they were flagged as M (spot was identified to be defective through
image inspection at manufacturing), C (spot has a high level of background contamination), I (spot has an irreg-
ular shape), or S (spot has a high number of saturated pixels). Values were retained if they were flaggedG
(spot is good) or L (spot is below local background noise). In addition, to be able to take the log base 2 trans-
formation of the background adjusted intensity values, all background adjusted intensity values below zero
were replaced with the value 0.00001. The data were then normalized using a cyclic LOESS procedure
executed in R, which accounted for themissing intensity values. Genotype information for the rats was down-
loaded from the STAR Consortium's website (http://www.snp-star.eu/). SNP locations are based on RGSC
version 3.2. The downloaded SNP data was cleaned by eliminated SNPs that did not differ between the paren-
tal strains, SNPs that are not genotyped in either parental strains, and SNPs that were heterozygous for either
of the parental strains. Unknowns were recoded if the surrounding SNPs had the same genotype. Double
recombinants were also recoded. SNPs were eliminated if more than two strains weremissing genotype infor-
mation. After the dataset had been cleaned, 1,460 unique strain distribution patterns were identified and used
in the eQTL analysis. Both the normalized expression data and themarkers used for the eQTL analysis are
available for download from the PhenoGenwebsite.

Rat, whole brain/left ventricle/liver/brown adipose tissue, Affymetrix Rat
Exon Array
Whole-brain, heart, liver, and brown adipose tissue gene expression data was obtained for a panel of 21
HXB/BXH RI strains (only 19 RI strains for the brown adipose tissue) and six related inbred strains on the
Affymextrix Rat Exon Array 1.0 ST. Individual probes were eliminated prior to normalization if their sequence
did not match any part of the RGSC version 3.2 of the rat genome, if their sequencematchedmultiple loca-
tions in themouse genome, or if the location in the genome that the probe didmatch contain a SNP between
the BrownNorway (BN/SsNHsdMcwi) inbred strains (reference strain) and the spontaneously hypertensive
rat (SHR/OlaIpcv) strain that was recently sequenced (Atanur et al. 2010) using next generation sequencing
or a SNP detected in DNA sequencing of the BN-Lx/CubPrin and SHR/OlaIpcvPrin strains (samemask that
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is implemented on PhenoGen). DNA sequence data for the BN/SsNHsdMcwi and SHR/OlaIpcv was down-
loaded directly from the Ensembl ftp site at: ftp://ftp.ebi.ac.uk/pub/databases/ensembl/snp/rat/shr/. For the
4,022,111 original probes, 604,601 were removed (472,072 did not map uniquely to the genome; 132,529
probes contained a SNP). Entire probe sets were eliminated if less than three of the original probes remained
after filtering. Arrays were examined for quality, and arrays that did not meet quality standards were elim-
inated. Probe intensities were normalized and summarized into core transcript clusters using RMA. The data-
set, including arrays from the six relevant inbred strains, was adjusted for batch effects using the empirical
Bayes method outlined in Johnson et al (2007). Only the 21 recombinant inbred strains (19 for the brown adi-
pose tissue data set) were included in the eQTL analysis. Themarker set used of eQTL calculations on the
HXB/BXH RI panel was originally downloaded from the Ensembl link to the STAR Consortium data (http://ww-
w.ensembl.org/Rattus_norvegicus/Info/Content?file=star/index.html). SNP locations are based on RGSC
version 3.2. The downloaded SNP data was cleaned by eliminated SNPs that did not differ between the paren-
tal strains, SNPs that are not genotyped in either parental strains, and SNPs that were heterozygous for either
of the parental strains. Unknowns were recoded if the surrounding SNPs had the same genotype. Double
recombinants were also recoded. SNPs were eliminated if more than two strains weremissing genotype infor-
mation. After the dataset had been cleaned, 761 unique strain distribution patterns were identified and used in
the eQTL analysis. Both the normalized expression data and themarkers used for the eQTL analysis are avail-
able for download from the PhenoGenwebsite
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MIAME Overview
MIAME (Minimum Information About aMicroarray Experiment) is a standard for exchangingmicroarray exper-
imental data in such a way as tomake it easily interpreted and allow for easy and independent verification. It
is described in the abstract of the original MIAME proposal [1] as follows:

Microarray analysis has become a widely used tool for the gen-
eration of gene expression data on a genomic scale. Although
many significant results have been derived from microarray
studies, one limitation has been the lack of standards for pre-
senting and exchanging such data. Here we present a proposal,
the Minimum Information About a Microarray Experiment
(MIAME), that describes the minimum information required to
ensure that microarray data can be easily interpreted and that
results derived from its analysis can be independently verified.
The ultimate goal of this work is to establish a standard for
recording and reporting microarray-based gene expression data,
which will in turn facilitate the establishment of databases and
public repositories and enable the development of data analysis
tools. With respect to MIAME, we concentrate on defining the
content and structure of the necessary information rather than
the technical format for capturing it.
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Thus MIAME compliance provides theminimum information required to interpret unambiguously and poten-
tially reproduce and verify an array-based gene expressionmonitoring experiment. Although details for par-
ticular experiments may be different, MIAME aims to define the core that is common tomost experiments.
MIAME is not a formal specification, but a set of guidelines.

One of themajor objectives of MIAME is to guide the development of microarray databases and dataman-
agement software. A standardmicroarray datamodel and exchange format MAGE [2], which is able to cap-
ture information specified by MIAME, has been submitted by EBI (for MGED) and Rosetta Biosoftware, and
recently became an Adopted Specification of the OMG standards group. Many organizations, including Agi-
lent, Affymetrix, and Iobion, have contributed ideas toMAGE.

AlthoughMIAME concentrates on the content of the information and should not be confused with a data for-
mat, it also tries to provide a conceptual structure for microarray experiment descriptions [3].

It is therefore of crucial importance that all users of the PhenoGen site closely conform to these guidelines. To
ensure this, the website is structured in such a way that very little room is given for non-conformity.

References

 [1] Nature Genetics, December 2001, 29:365 – 371. http://www.nature.com/cgi-taf/Dy-
naPage.taf?file=/ng/journal/v29/n4/abs/ng1201-365.html

 [2] http://www.mged.org/Workgroups/MAGE/mage.html

 [3] http://www.mged.org/Workgroups/MIAME/miame_1.1.html
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Promoter Analysis Tools
Program Operating

Principle
Technical Data and URL Reference

AIignACE Gibbs sam-
pling algo-
rithm that
returnsa
series of
motifs as
weight
matrices that
are over-rep-
resented in
the input set.

Judgesalignments sampled during the course of the algorithm using a
maximum a priori likelihood score, which gauges the degree of over-rep-
resentation. Providesan adjunct measure (group specificity score) that
takes into account the sequence of the entire genome and highlights
thosemotifs found preferentially in association with the genesunder con-
sideration.

http://atIas.med.harvard.edu

1

ANN-Spec ModeIs the
DNAbinding
specificity of a
transcription
factor using a
weight matrix.

Objective function based on log likelihood that a transcription factor binds
at least once in each sequence of the positive training data compared with
the number of times it is estimated to bind in the background training data.
Parameter fitting is accomplished with a gradient descent method, which
includesGibbs sampling of the positive training examples.

http://www.cbs.dtu.dk/services/DNAarray/ann-spec.php

2

Consensus Modelsmotifs
using weight
matrices
searching for
lhematrixwith
maximum
information
content.

Usesa greedymethod, first finding the pair of sequences that share the
motif with greatest information content, then finding the third sequence
that can be added to themotif, resuIting in greatest information content.

http://bifrost.wustl.edu/consensus/

3

GLAM Gibbs sam-
pling-based
algorithm that
automatically
optimizes the
alignment
width and eval-
uates the sta-
tistical
significance of
its output.

Since the basic algorithm cannot findmultiple motif instancesper
sequence, long sequencesare fragmented into shorter ones, and the
alignment is transformed into a weight matrix and used to scan the
sequences to obtain the final site predictions.

http://zlab.bu.edu/glam/

4

Improbizer Usesexpec-
tationmax-
imization to
determine
weight
matricesof
DNAmotifs
that occur
improbably
often in the
input
sequences.

Asa background (null) model it usesup to a second-order Markovmodel
of background sequence. Optionally, Improbizer constructs a Gaussian
model of motif placement so that motifs that occur in similar positions in the
input sequencesaremore likely to be found.

http://www.soe.ucsc.edu/~kent/improbizer

5

MEME Optimizes the
E-value of a
statistic
related to the
information
content of the

Rather than sum of information content of eachmotif column, the statistic
used is the product of the p-valuesof column information contents. The
motif search consists of performing expectationmaximization from start-
ing points derived from each subsequence occurring in the input
sequences. MEMEdiffers fromMEME3mainly in using a correction factor
to improve the accuracyof the objective function.

6
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motif. http://meme.sdsc.edu

MITRA Usesan effi-
cient data
structure to
traverse the
space of
IUPAC pat-
terns.

For each pattern, MITRA computes the hypergeometric score of the
occurrences in the target sequences relative to the background sequence
and reports the highest scoring patterns.

http://www.ccls.columbia.edu/compbio/mitra/

7

MotifSampler Matrix-based
motif finding
algorithm that
extendsGibbs
sampling by
modeling the
background
with a higher
order Markov
model.

The probabilistic framework is further exploited to estimate the expected
number of motif instances in the sequence.

http://www.esat.kuleuven.ac.be/~dna/Biol/Software.html

8

Oligo/dyad
anaIysis

Detects over-
represented
oligonucleotides
with oligo anal-
ysis and
spacedmotifs
with dyad anal-
ysis.

These algorithmsdetect statistically significant motifs by counting the
number of occurrencesof each word or dyad and comparing these with
expectation. Themost crucial parameter is the choice of an appropriate
probabilisticmodel for the estimation of occurrence significance.

http://rsat.ulb.ac.be/rsat/

9, 10

QuickScore Based on an
exhaustive
searching
algorithm that
estimates
probabilities of
rare or
frequent
words in
genomic texts.

Incorporatesan extended consensusmethod allowing well-definedmis-
matchesand usesmathematical expressions for efficiently computing z-
scoresand p-valuesdepending on the statisticalmodels used in their
range of applicability. Special attention is paid to the drawbacksof numer-
ical instability. The backgroundmodel isMarkovian, with order up to 3.

http://algo.inria.fr/dolley/QuickScore/

11

SeSiMCMC Modification of
Gibbs sampler
aIgorithm that
models the
motif as a
weight matrix,
optionallywith
the symmetry
of a pal-
indrome or of
a direct repeat
and optionally,
with spacers.

Includes two alternating stages. The first one optimizes the weight matrix
for a givenmotif and spacer length. The algorithm changes the positions
of themotif occurrence in the sequencesand infers themotif model from
the current occurrences. These changesare used to optimize the like-
lihood of sequencesasbeing segmented into the (Bernoulli) background
and themotif occurrences. The optimization is organized via a Gibbs-like
Markov chain that samplespositions in sequencesone-by-one until the
Markov chain converges. The second stage looks for best motif and
spacer lengths for obtainedmotif positions. It optimizes the common infor-
mation content of motif and of distributionsof motif occurrence positions.

http://favorov.imb.ac.ru/SeSiMCMC/

12

Weeder Consensus-
basedmethod
that enu-
merates
exhaustively
all the oligos
up tomax-
imum length
and collects

Eachmotif is evaluated according to the number of sequences in which it
appears and how well conserved it is in each sequence, with respect to
expected valuesderived from the oligo frequencyanalysis of all the avail-
able upstream sequencesof the same organism. Different combinations
of canonicalmotif parameters derived from the analysis of known
instancesof yeast transcription factor binding sites (length ranging from 6
to l2, number of substitutions from 1 to 4) are automatically tried by the
algorithm in different runs. It also analyzesand compares the top-scoring

13
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their occur-
rences (with
substitutions)
from input
sequences.

motifs of each run with a simple clusteringmethod to detect which ones
could bemore likely to correspond to transcription factor binding sites.
Best instancesof eachmotif are selected from sequencesusing a weight
matrix built with sites found by consensus-based algorithms.

http://159.149.109.9/modtools/

YMF Usesan
exhaustive
search algo-
rithm to find
motifswith the
greatest z-
scores.

A p-value for the z-score is used to assess the significance of themotif.
Motifs themselvesare short sequencesover the IUPAC alphabet with
spacers ("N"s) constrained to occur in themiddle of the sequence.

http://bio.cs.washington.edu/software.html#yms

14

Composite
Module
Analyst
(CMA)

Usesamulti-
component fit-
ness function
for selection of
the promoter
modelwhich
fits best to the
observed
gene expres-
sion profile.

Definesa promoter model based on composition of transcription factor
binding sites and their pairs. Adjusts the results of the fitness function
using a genetic algorithm for the analysis of functionally related or
coexpressed genes.

http://www.gene-regulation.com/cgi-bin/CMA/cma.cgi

15

REDUCE Motif-based
regression
method for
microarray
analysis.

The only required inputs are (i) a single genome-wide set of absolute or
relativemRNAabundancesand (ii) the DNA sequence of the regulatory
region associated with each gene that is probed. REDUCEusesunbiased
statistics to identify oligonucleotidemotifswhose occurrence in the reg-
ulatory region of a gene correlateswith the level of mRNAexpression.
Regression analysis is used to infer the activity of the transcriptionalmod-
ule associated with eachmotif.

http://bussemaker.bio.columbia.edu/reduce/

16

Moti-
fRegressor

Combines the
advantagesof
matrix-based
motif finding
and oligomer
motif-expres-
sion regres-
sion analysis.

MotifRegressor first constructs candidatemotifs and then applies regres-
sion analysis to select motifs that are strongly correlated with changes in
gene expression. It is particularly effective in discovering expression-medi-
atingmotifs of medium-to-long width with multiple degenerate positions.
MotifRegressor relies in part onMDScan, a software package developed
by the Brutlag Lab at Stanford University.

http://www.math.umass.edu/~conlon/mr.html

17

CisModule Employsa
hierarchical
mixture
approach to
model the cis-
regulatory
module struc-
ture.

It is based on the hierarchicalmixturemodel, followed byade novomotif-
module discovery algorithm using the Bayesian inference of module loca-
tionsand within-modulemotif sites. Dynamicprogramming-like recur-
sionsare developed to reduce the computational complexity from
exponential to linear in sequence length.

http://www.stat.ucla.edu/~zhou/CisModule/index.html

18

References

1. Hughes JD, Estep PW, Tavazoie S, Church GM (2000). Computational identification of cis-regulatory
elements associated with functionally coherent groups of genes inSaccharomyces cerevisiae. J Mol
Biol 296:1205–1214.

2. WorkmanCT and StormoGD (2000). ANN-Spec: amethod for discovering transcription factor binding
sites with improved specificity. PacificSymposium on Biocomputing (ed. Altman R, Dunker AK,
Hunter L, Klein TE). 467–478 (Stanford University, Stanford, CA).

167

http://159.149.109.9/modtools/
http://bio.cs.washington.edu/software.html#yms
http://www.gene-regulation.com/cgi-bin/CMA/cma.cgi
http://www.gene-regulation.com/cgi-bin/CMA/cma.cgi
http://www.gene-regulation.com/cgi-bin/CMA/cma.cgi
http://bussemaker.bio.columbia.edu/reduce/
http://www.math.umass.edu/~conlon/mr.html
http://www.stat.ucla.edu/~zhou/CisModule/index.html


3. Hertz GZ and StormoGD (1999). Identifying DNA and protein patterns with statistically significant
alignments of multiple sequences. Bioinformatics 15:563–577.

4. Frith MC, Hansen U, Spouge JL, Weng Z (2004). Finding functional sequence elements by multiple
local alignment. Nucleic Acids Res 32:189–200.

5. AoW, Gaudet J, Kent WJ, Muttumu S, Mango SE (2004). Environmentally induced foregut remodeling
by PHA-4/FoxA and DAF-12/NHR. Science 305:1743–1746.

6. Bailey TL and Elkan C (1995). The value of prior knowledge in discoveringmotifs with MEME. Pro-
ceedings of the Third International Conference on Intelligent Systems for Molecular Biology. 21–29
(AAAI Press, Menlo Park, CA).

7. Eskin E and Pevzner P (2001). Finding composite regulatory patterns in DNA sequences. Bio-
informatics (Supplement 1) 18:S354–S363.

8. Thijs G, et al (2001). A higher-order backgroundmodel improves the detection of promoter regulatory
elements by Gibbs sampling. Bioinformatics 17:1113–1122.

9. van Helden J, Andre B, Collado-Vides J (1998). Extracting regulatory sites from the upstream region of
yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 281:827–842.

10. van Helden J, Rios AF, Collado-Vides J (2000). Discovering regulatory elements in noncoding
sequences by analysis of spaced dyads. Nucleic Acids Res 28:1808–1818.

11. Régnier M and Denise A (2004). Rare events and conditional events on random strings. DiscreteMath
Theor Comput Sci 6:191–214.

12. Favorov AV, GelfandMS, Gerasimova AV, Mironov AA, Makeev VJ (2004). Gibbs sampler for iden-
tification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length
and its validation on the ArcA binding sites. Proceedings of BGRS 2004 (BGRS, Novosibirsk).

13. Pavesi G, Mereghetti P, Mauri G, and Pesole G (2004). WeederWeb: discovery of transcription factor
binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32:W199–W203.

14. Sinha S and TompaM (2003). YMF: a program for discovery of novel transcription factor binding sites
by statistical overrepresentation. Nucleic Acids Res 31:3586–3588.

15. Konovalova T, Valeev T, Cheremushkin E, Kel AE (2005). Composite Module Analyst: Tool for Pre-
diction of DNA Transcription Regulation. Testing on Simulated Data. ICNC 2:1202-1205.

16. Roven C and Bussemaker HJ (2003). REDUCE: an online tool for inferring cis-regulatory elements
and transcriptional module activities frommicroarray data. Nucleic Acids Research 31(13):3487-3490.

17. Conlon EM, Liu XS, Lieb JD, Liu JS(2003). Proc Natl Acad Sci USA 100 (6):3339.
18. ZhouQ andWongWH (2004). CisModule: De novo discovery of cis-regulatory modules by hierarchical

mixturemodeling. Proc Natl Acad Sci USA 101:12114-12119.

168



Index

3

3' Arrays

Model-based Checks 50

Within Array Checks 48

A

Accessing Arrays 40, 157

Advanced Annotation 112

Affymetrix 47, 74

Filtering 74

Model-based Checks

3' Arrays 50

Exon Arrays 54

Pseudo Images 57

Within-array Checks

3' Arrays 48

Exon Arrays 52

Analysis

Promoter Tools 165

Statistics 132

Analyzing Arrays 22

Analyzing Datasets 22

Filtering 74, 85

Process Flow 73

Types of Statistical Analysis 78

Clusters 83

Correlation 81

Differential Expression 79

Multiple Comparison Correction 82

Viewing Datasets 23

Analyzing Gene Lists 120

MEME 124, 128

oPOSSUM 123

169



Annotation 112, 114

Performing 113

Approving 65, 156

Arrays 40

Analyzing 22

Approve Array Requests 156

Grant Access 157

Selecting Arrays 45

UploadingMIAMExpress Data 29

B

Basic Annotation 112-113

bQTLs Overlapping Region Tab 19

Browsing Arrays 40

Granting Access to Arrays 156

C

Calculating QTLs for Phenotype 147

Circos Plots 17, 19-20

Clustering Analysis 83

Filtering 78

Saving Results 94

Viewing Results 95

CodeLink Data Quality 61

CodeLink Software 64

Coefficient of Variation 63

Distributions of Probe Intensities 62

Pseudo Images 63

CodeLink Gene Filtering 76

CodeLink Software 64

Coefficient of Variation 63

Comparing Gene Lists 141

Copying

Gene Lists 111, 140

Phenotype Data 89

Correlation Analysis 81

170



Creating 36, 106

Datasets 36, 45, 64

Gene Lists 106

Filtering & Analyzing 85

From Datasets 45

From Existing Lists 111, 140

Manually Enter 109

Uploading 108, 143

D

Data Analysis 74, 78

Clustering Analysis 83

Correlation Analysis 81

Differential Expressions 79

Filtering 74

Multiple Comparison Correction 82

Types of Statistical Analysis 78

Data Grouping and Normalization 67

Grouping Datasets 72

Groups 67

Normalization 67

Normalizing Datasets 72

Data Quality 47, 61

Assessing for Affymetrix 47

Assessing for CodeLink 61

CodeLink Software 64

Coefficient of Variation 63

Distributions of Probe Intensities 62

Model-based Checks

Affymetrix

3' Arrays 50

Exon Arrays 54

Pseudo Images (Affymetrix) 57

Pseudo Images (CodeLink) 63

Within-array Checks

Affymetrix

3' Arrays 48

171



Exon Arrays 52

Datasets 36

Arrays 22

Approving Access to 156

Retrieving 40

Selecting 45

Uploading into MIAMExpress 29

Creating 36

Running Quality Control 64

Selecting Arrays & Finalizing 45

Data Analysis 73

Filtering Overview 74

Performing Filtering & Analysis 85

Types of Statistical Analysis 78

Deleting 100

Details 28

Downloading 99

Filtering 85

Finalizing 45

Grouping 72

Normalizing 72

Quality Control 46, 64-65

Selecting Arrays 45

Types of Statistical Analysis 78

Viewing 23, 28

Defining QTLs 146

Deleting

Dataset Versions 100

Datasets 100

Gene Lists 144

Phenotype Data 89

Detailed Transcription Information 12

bQTLs Overlapping Region Tab 19

eQTL Tab 16

Gene Identifiers 12

Genes Physically Located in a Region Tab 17

172



Panel Exon Correlation Tab 12, 15

Panel Expression Tab 14

Panel Heritability Tab 14

Parental Expression Tab 13

Regions 17

Running the Circos Plot 17

Transcripts Controlled from Region (eQTL) Tab 20

Details 28, 42, 106

Differential Expression Analysis 79

Non-Parametric Analysis 80

Parametric Analysis 79

T-test with Noise Distribution 80

Using One-way ANOVA 80

Using Two-way ANOVA 80

Distributions of Probe Intensities (CodeLink) 62

Download Resources 154

Downloading 99, 144

eQTLMarker Data 150

E

Entering Phenotype Data 91

Entering Phenotypic QTLs 146

eQTL 113

DownloadingMarker Data 150

Viewing locations 116, 151

eQTL Tab 16

Running the Circos Plot 17

Exon-level Information 136

Exon Arrays

Model-based Checks 54

Within-Array Checks 52

Exon Correlations 136

Exploring Exons

Viewing Exon-level Information 136

Expression QTL 113

Extraction

Running Upstream Sequence Extraction 124

173



F

Filtering

Affymetrix Genes 74

Clusters 78

CodeLink Genes 76

Datasets 85

Overview 74

Performing 85

G

Gene Expression Data 101, 133

Gene Filtering Procedures 74, 76, 78

Gene List Analysis Tools 104

Creating Gene Lists 106

Copying 111

Manually Enter 109

Uploading 108, 143

Overview 104

Viewing 104, 106

Gene Lists

Annotation 112-114

Comparing 141

Creating 106

From Existing Gene List 111, 140

Manually Enter 109

Uploading 108, 143

Deleting 144

Details 106

Downloading 144

Entering Phenotypic QTLs 146

Literature Searches 118

Performing a Search 119

Viewing Results 120

Overview 104

Performing

Annotation 113-114

174



MEME Analysis 124

oPOSSUM Analysis 123

Upstream Sequence Extraction 124

Promoter Analysis & Extraction 120

MEME 122

Running 124

Viewing Results 128

oPOSSUM 121

Running 123

Viewing Results 126

Upstream Sequence Extraction

Running 124

Viewing Results 129

QTL

Entering Phenotypes 146

eQTL 113, 116, 151

Saving as Other Identifiers 140

Sharing 145

Uploading 108, 143

User Access 145

Viewing

Details 106

Gene Lists 104

User Access to a Gene List 145

Genes Physically Located in a Region Tab 17

Getting Started 2

Logging In 7

Logging Out 7

Registering an Account 6

Your Home Tab 7

Grouping Datasets 72

Guidelines 47, 61

H

HomePage 7

Homolog Searches 130

Homologous genes 130

175



I

Investigating QTLs 146

Calculating QTLs for Phenotype 147

Downloading eQTLMarker Sets 150

Entering Phenotypic QTLs 146

Viewing Location and eQTL 116, 151

L

Literature Searches 118

Performing 119

Viewing Results 120

Location and eQTL 116, 151

Logging In 7

Logging Out 7

M

Manually Enter a Gene List 109

MEME 122

Results 125

Running 124

Viewing Results 128

MenuOptions

Detailed Transcription Information 12

Gene List Analysis Tools 104

Home 8

Microarray Analysis Tools 73

QTL Tools 146

MIAMExpress

Overview 163

Uploading Arrays 29

Microarrays 22

Model-based Checks

Affymetrix

3' Arrays 50

Exon Arrays 54

More Annotation Options 113-114

176



Motif 124

Multiple Comparison Correction 82

My Profile 9

N

Non-Parametric Analysis 80

Normalization and Data Grouping 67

Creating Groups 67

Grouping Datasets 72

Normalizing Data 67

Normalizing Datasets 72

Normalizing Datasets 72

O

Online Help 10

oPOSSUM 121

Results 125

Running 123

Viewing Results 126

Overview 1

Analyzing Datasets 73

AnalyzingMicroarray Data 22

Annotation 112

Creating Datasets 36

Data Grouping and Normalization 67

Detailed Transcription Information 12

Gene Identifiers 12

Regions 17

Filtering 74

Homolog Searches 130

Investigating QLT Regions 146

Literature Searches 118

MIAMExpress 163

PhenoGenWebsite 3

Preparing Datasets 67

Principal Investigator 155

Quality Control Checks 46

177



P

Panel Exon Correlation Tab 15

Panel Expression Tab 14

Panel Heritability Tab 14

Parametric Analysis 79

Parental Expression Tab 13

Pathways 131

Performing

Annotation 113-114

Homolog Searches 130

Literature Searches 119

MEME Analysis 124

oPOSSUM Analysis 123

Quality Control 64

Upstream Sequence Extraction 124

PhenoGenWebsite 3

Conventions 9

Getting Started 2

HomePage 5

Logging In 7

Logging Out 7

Process Flow 4

Purpose 1

Registration 6

Updating Your Profile 9

Using the Help 9

Using the site 9

Your Home Tab 7

Phenotype Data 89

Preparing Datasets 67

Principal Investigator 155

Approving Array Requests 156

Granting Array Access 157

Process Flow 4

Promoter Analysis 120

MEME 124, 128

178



oPOSSUM 123

Tools 165

Upstream Sequence Extraction 124

Pseudo Images 57, 63

Q

QTL Tools

Calculating QTLs for Phenotype 147

Entering Phenotypic QTLs 146

eQTL 113

Overview 146

Viewing eQTL Locations 116, 151

Quality Control Checks

Additional Sources 160

Affymetrix Data

Assessment Guidelines 47

Model-based Checks

3' Arrays 50

Exon Arrays 54

Pseudo Images 57

Within-array Checks

3' Arrays 48

Exon Arrays 52

All About R 160

Array Integrity 46

CodeLink Data

CodeLink Software 64

Coefficient of Variation 63

Distributions of Probe Intensities 62

Guidelines 61

Pseudo Images 63

Overview 46

Running 64

Viewing Results 65

R

R 160

179



Re-normalizing a Public Dataset 93

Registering an Account 6

Renormalizing a Public Dataset 89

Researching Genes

Overview 104

Results

Approving Quality Control 65

Clustering 94-95

Literature Search 120

MEME 125

oPOSSUM 125

Promoter Analysis 125, 128

Quality Control 65

Upstream Sequence Extraction 125, 129

Retrieving Arrays 40

Running

MEME 124

oPOSSUM 123

Quality Control Checks 64

Upstream Sequence Extraction 124

S

Saving

A Gene List as Other Identifiers 140

Cluster Results 94

Searching

Arrays 45

Homolog Searches 130

Selecting Arrays 45

Sharing Gene Lists 145

Signaling Pathway Impact Analysis 131

SPIA 131

Statistical Analysis 78

Analysis Statistics 132

Clustering 83

Correlation 81

180



Differential Expression 79

Non-Parametric Analysis 80

Parametric Analysis 79

T-test with Noise Distribution 80

Using One-way ANOVA 80

Using Two-way ANOVA 80

Multiple Comparison Correction 82

Performing 85

T

Transcripts Controlled from Region (eQTL) Tab 20

U

Updating Your Profile 9

Uploading

Arrays 29

Gene Lists 108, 143

Phenotype Data 89

Upstream Sequence Extraction

Results 125

Running 124

Viewing Results 129

User Registration 6

Using theWebsite & Help 9

V

Versions: Deleting 100

Viewing

Array Details 42

Cluser Analysis Results 95

Dataset Details 28

Datasets 23

eQTL Location 116, 151

Gene Expression Data 101, 133

Gene List Access 145

Gene List Details 106

Gene Lists 104

181



Location and eQTL 116, 151

Pathways 131

User Access to Gene Lists 145

Viewing Homologs 130

W

Website Process Flow 4

Within-array Checks

Affymetrix

3' Arrays 48

Exon Arrays 52

Y

Your Profile 9

182


	Overview
	Disclaimer
	Citation for the PhenoGen Website

	Getting Started
	Minimum   System Requirements
	User Types
	Basic User
	Principal Investigator

	PhenoGen Website Overview
	Website Process Flow for Microarray Analyses

	Website Home Page
	Registering an Account
	Logging In and Out
	Logging Into the Website
	Logging Out of the Website

	Updating Your Profile
	Using the PhenoGen Website
	Using the Online Help


	Detailed Transcription Information
	Transcriptome Reconstruction (Rat Only)
	Detailed Transcription Information for Gene Identifiers
	Parental Expression
	Panel Heritability
	Panel Expression
	Panel Exon Correlation
	eQTL

	Detailed Transcription Information for Regions
	Genes Physically Located in a Region
	bQTLs Overlapping Region
	Transcripts Controlled From Region (eQTL)


	Analyzing Microarrays
	Viewing Datasets
	Public Datasets

	Viewing Dataset Details
	Uploading Your Arrays
	Uploading an Array

	Editing Your Experiments
	Creating Datasets
	Retrieving Arrays
	Selecting Arrays & Finalizing   Datasets
	Quality Control Checks Overview

	Preparing Datasets
	Grouping
	Eliminating Probes with Poor Sequence Integrity

	Grouping   and Normalizing Datasets
	Analyzing Datasets
	Filtering
	Types of Statistical Analysis
	Filtering and Analyzing Datasets
	Using Phenotype Data in Correlation Analysis
	Saving Cluster Analysis Results
	Viewing Cluster Analysis Results

	Downloading a Dataset
	Deleting Datasets and Versions
	Viewing Gene Expression Data

	Analyzing Gene Lists
	Viewing Gene Lists
	Viewing Gene List Details
	Creating a Gene List Overview
	Uploading a Gene List
	Manually Entering a Gene List
	Copying a Gene List

	Annotating Gene Lists
	Basic Annotation
	More Annotation
	Performing Annotation
	Using More Annotation Options

	Viewing Location and eQTL
	Expanded Chromosomal View

	Literature Search Overview
	Co-reference Analysis
	Performing a Literature Search
	Viewing Literature Search Results

	Promoter Analysis and Extraction
	oPOSSUM Overview
	MEME Overview
	Upstream Sequence Extraction Overview
	Running oPOSSUM
	Running MEME
	Running Upstream Sequence Extraction
	Viewing Promoter Results

	Homologs Overview
	Viewing Homologs

	Viewing Pathways
	Viewing Analysis Statistics
	Viewing Gene Expression Data
	Viewing Exon-level Correlations
	Saving a Gene List as Other   Identifiers
	Comparing Gene Lists
	Uploading a Gene List
	Downloading a Gene List
	Deleting a Gene List
	Sharing a Gene List

	Investigating QTL Regions
	Entering Phenotypic QTLs
	Calculating QTLs for Phenotype
	QTL Calculation

	Downloading eQTL Marker Sets
	Viewing Location and eQTL
	Expanded Chromosomal View


	Download Resources
	Principal Investigator Overview
	Approving Array Requests
	Granting Array Access

	Supplementary Information
	Additional Quality Control Sources
	All About R
	Viewing the R Project Homepage
	Viewing R Manuals

	Expression QTL Derivation
	Mouse, whole brain, Affymetrix Mouse 430 version 2 array
	Mouse, whole brain, Affymetrix Mouse Exon Array
	Rat, whole brain, CodeLink Whole Genome Rat Array
	Rat, whole brain/left ventricle/liver/brown adipose tissue, Affymetrix Rat Ex...

	MIAME Overview
	Promoter Analysis Tools

	Index

